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1.1 Introduction and Motivation

Our contemporary societies are examples of highly complex systems with
many interacting constituents that are organized in ways that often are hard
to grasp. Their organizational systems and infrastructures are time-dependent
and highly interconnected. Thus, what may appear as different parts of our
societies, do indeed depend on and influence each other.

Large Complex Critical Infrastructures (LCCIs) are national — or inter-
national — technological systems whose correct functioning has a high social
impact. A current definition of a “Critical Infrastructure” is a large scale in-
frastructure which if degraded, disrupted or destroyed, would have a serious
impact on health, safety, security or well-beings of citizens or the effective
functioning of governments and/or economy [1]. This definition therefore al-
lows to label many infrastructures that we are well-familiar with from our
daily lives, as being “critical”. Among them are, for instance, the networks
for the transmission and the distribution of electrical power, those allowing
communication to occur (in all its forms, from telephones to the Internet),
transportation networks like roads, railways and sky-routes up to pipelines
for drinking water, gas and oil, etc. LCCIs are thus strategic (in the wider
sense of the term); as such, an enormous care should be taken to keep them op-
erational and efficient, preventing their failure due to accidents or intentional
attacks.

A further major issue comes from the high level of interdependency, i.e. the
fact that each LCCI interacts (in a more or less explicit way) with one another.
This may have the implication that a disturbance in one of them might affect

∗ Also with Ylichron S.r.l., Roma, Italy.
† Current address: Saint-Gobain Recherche, Aubervilliers, France.

 A Complex System’s View of Critical Infrastructures 
Buchreihen Understanding Complex Systems 
Verlag Springer Berlin / Heidelberg 
ISSN 1860-0832 (Print) 1860-0840 (Online) 
Volume 2008 
Buch Managing Complexity: Insights, Concepts, Applications 
DOI 10.1007/978-3-540-75261-5 
Copyright 2008 
ISBN 978-3-540-75260-8 
DOI 10.1007/978-3-540-75261-5_11 
Seiten 241-260



2 V. Rosato et al.

the functionality of others. This renders the task of preventing failures and, in
general, the same operational control, an extremely complex task. It is indeed
desirable to have the best possible control on single infrastructures in order
to prevent faults. However, optimizing and securing individual infrastructures
independent of the presence of others, is often not sufficient to securing such
interconnected system.

LCCIs are also intriguing technological objects. They are “complex”, ac-
cording to the current definition of complexity, as their behavior cannot be
simply predicted on the basis of the behavior of their single components. Com-
plexity triggers the emergence of new phenomena which cannot be predicted
by usual means but only through a complete description of all its components
altogether. Emergence of new phenomena occurs, a fortiori, when many LC-
CIs are functionally coupled together: also in the case of a weak connection,
there is the seed for the emergence of further unpredictable behavior.

All this conceptual entanglement has attracted the interest of the Com-
plexity Science (CS) community. This work intends to introduce some basic
statements, show the CS methods and tools and some recent results of their
application in the field of LCCIs. In this chapter, we intend to make a first
recognition of some basic problems which can be tackled by making use of
mathematical models and numerical methods, with the aim of producing re-
sults useful for the understanding of some fundamental questions related to
their structure.

1.2 Why LCCIs Become/Behave More and More
Complex

Historically, in Europe (at least), the LCCIs were often national monopolies
typically owned and/or controlled by the national governments. Over the last
decades, this situation has changed to a large extent; many LCCI sectors
have been deregulated and thus the monopolistic state removed. This opened
up for new market players that together with the former monopolists (of a
given region) could compete. Notice that this situation was not (in principle)
restricted to a geographical (national) region, but also international competi-
tion was encouraged by the market liberalization. For instance, one prominent
example of the latter is the European power market. The formal basis of the
deregulation of the European electricity market was laid out in the 1996 EU
Directive 96/92. However, about three years later, on 19 February 1999, the
electricity market in thirteen countries in the European Union (EU) and the
European Economic Area (EEA) began to open up on an international basis.
A competitive European Power market was born!

With the deregulation of the European LCCI sector, new challenges were
created. Now (big) consumers could, say, buy their electrical power from any
market participant. This implied that the backbone of the European transmis-
sion grid had to be fully interconnected, and that it should be able to handle
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1 A Complex System’s View of Critical Infrastructures 3

rising loads. However, the European transmission grids were not designed for
this purpose (and volume) in mind. Connections to neighboring states were
typically built up for backup reasons, and to handling short term import-
export scenarios. Hence, the new business model that was put in place (due
to the liberalization) prompted some technically minded people to question
the robustness of the ever more complex power transmission grid. This concern
became strengthened by the increased terrorism threat as well as the recent
large-scale Italian September 2003 blackout, and the similar previous cases
from London, North America, Sweden and Denmark. For instance, the cause
of the London blackout was traced back to a badly-installed fuse at a power
station; indeed all the others happened for similar reasons. Furthermore, it
was realized, by a careful analysis of the cause of events, that problems typi-
cally start at one place and propagate over large geographical distances, like
a domino effect. For instance, the great 2003-blackout in New York initially
was triggered by an event in the mid-west (Ohio) [2, 3].

Analogous problems must be faced in telecommunication (TLC) systems,
where a large number of stakeholders crowd common infrastructures and com-
pete for bandwidth and customers. TLC routes are constantly stressed by a
constantly increasing traffic level.

Most LCCIs have grown in an unsupervised regime (there is not a gen-
eral controller of worldwide Internet network) and needs to face a dramatic
increase of their usage by adopting an “intrinsic” ability to adapt themselves
according to changing external conditions. This seems to be a key point in this
matter: Are technological networks able to autonomously react to external in-
put in a way to adapt their functioning to constantly guarantee a reasonable
efficiency? If so, which are the agencies that allow adaptive behavior to oc-
cur? What can LCCI managers reasonably do to let adaptation mechanisms
run faster and more efficiently, and to better respond to mutated external
conditions?

Complexity Science tries to answer these questions also by identifying com-
mon scenarios which subtend rather “universal” behaviors which take place in
complex systems. This approach has allowed a flow of data and methods from
diverse scientific fields and triggered the customization of ideas and meth-
ods, typical in one domain, to other domains. Living objects, for instance, as
bacterial colonies, swarms and bird flocks do display a number of intriguing
control strategies which, if properly understood, could be mutuated and used
to analyse and control technological systems (bio-mimetic strategies).

This scenario has prompted calls for improved coordination between basic
and applied research on the evaluation and the design of new tools for the
analysis and the control of LCCIs at a multi-national level. For instance,
many EU funded projects have been launched within this domain in the sixth
Framework Program (FP6), and similar projects have received public funding
in the US. Dedicated programs within this area are forecasted also for FP7.
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In the remaining part of this chapter, we will introduce and discuss LCCIs
from a complex network perspective. In particular, the graphs, which are the
network’s basic model and will be the object of the present study, will be
introduced. They are mathematical objects onto which CS can deploy its
methods whose results can provide measures of their ability of providing useful
information on the networks. Various analyzing methods suitable for LCCIs
will be proposed and discussed. Examples of results that can be obtained from
such analysis will be given for some example LCCIs.

1.3 What is A Network?

The term network is used in every-day life, so most of us have an impression
of what is meant by it. As we will attempt to reply to basic questions on
these networks, also the metaphors which will be used to describe networks
will be at a high level of abstraction. However, here we will put a specific
meaning to that word. By a network we will mean a set of N objects, referred
to as nodes or vertices, that are connected through what is typically known
as links, arcs or edges (L). A network G will thus be indicated as a collection
of objects G = (N, L) (in these terms, the network can be also represented as
a mathematical Graph which is indicated by explicitating the same entities).
Some simple networks are sketched in Fig. 1.1. In this figure, the nodes are
indicated by red (or grey) filled circles, while the links are black lines between
the nodes. For instance, for an electrical power network, nodes correspond
to power generators or distribution (or transmission) stations, while links
represent the power transmission lines connecting the nodes.

It should be noticed that links do not have to be physical connections;
they might also represent logical connections between nodes, such as in the
case of a so-called social network. Here nodes are persons, and a link exists
between two persons if they are considered (in some way) to be friends.

Networks represent the natural starting point for modelling infrastruc-
tures. As mentioned above, the investigation of networks has received an in-
creasing attention in the last decade in the CS community. Genuinely, the
field was embodied in mathematics as graph theory, which, due to progress in
computer power and the growing consciousness of the relevance of network’s
structure in several fields, has prompted this topics to a wider scientific au-
dience. The field experienced a strong push forward when the famous “small-
world” paper by Watts and Strogatz was published in 1998 [5] by delivering
examples of networks where seemingly distant nodes actually are surprisingly
close to each other due to the peculiar network structure; this property has
been called “small-world” as it perfectly reproduces the situation of a global-
ized world where local events can have a long-range impact. This property has
also been fixed in the common language by the phrase “six degrees of separa-
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1 A Complex System’s View of Critical Infrastructures 5

Fig. 1.1. Examples of complex networks. Fig. 1.1(A) depicts a random network,
while a scale-free network is shown in Fig. 1.1(B). The typical degree distribution,
P (k) of each class of network is shown in the lower part of the figure, i.e. the
distribution of the number of links, k that is associated with each node. Notice in
particular the marked difference in topology that results from the change in the
degree distribution. (After Ref. [4])

tion”4. It expresses that in a small-wold class network, two arbitrary chosen
nodes can be connected in, on average, only six steps. For social networks,
this effects (as well as the number of six) had already been known empiri-
cally since the 1960’s due to some cleverly designed experiments conducted
by the social psychologist Stanley Milgram [6]; with a small chain of friends
and friends-of-a-friend, each of us can reach whatsoever other person in the
world in (on average) six steps.

A major outcome of this new branch of theoretical disciplines is the recog-
nition that diverse networks (from sociology, technology and biology) display
a peculiar structure with clear small-world characteristics. This seems to be a
property emerging from complexity and, as such, probably brings some added-
value to the network’s property. Much work has already been performed in
order to show which are exactly the benefits engendered by such a topological
structure.

4 The phrase was made well-known outside scientific circles by John Guare’s pop-
ular theater play of the same name (and later movie).
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Recently, several comprehensive reviews on network research (graph the-
ory) have appeared in the literature [7–10] displaying the current state of
its application to real world networks. Most of the work, so far, has focused
on static properties and behaviour of networks, e.g. the question of network
robustness [11].

The main property of a network stems from its classification as belonging
to a specific topological class. These are related to the specific form displayed
by the distribution of the node’s degree, k, of the network, P (k) (degree distri-
bution). The degree, k, of a node is defined as the number of nodes to which
it is directly (physically or logically) connected. The most relevant topological
classes are:

• Random networks
• Scale-Free networks

In the first case (see Fig. 1.1A), P (k) has a Poissonian shape; the network is
thus composed of almost equivalent nodes, with an average degree 〈k〉 and a
given standard deviation. In the second case (see Fig. 1.1B), the situation is
more complex, as P (k) follows a power-law, i.e.

P (k) ∼ k−γ , (1.1)

where γ is a real positive constant which has been found to take values typi-
cally in the range 2 < γ < 3 [9]. This situation occurs when nodes are highly
non-equivalent. Such networks have been named Scale-Free (SF hereafter) be-
cause a power-law has the property of having the same functional form at
all scales. In fact, power-laws are the only functional forms f(x) that remain
unchanged, apart from multiplicative factors, under a rescaling of the indepen-
dent variable x. They are the only solutions to the equation f(αx) = βf(x).
SF-networks, having a highly inhomogeneous degree distribution, result in the
simultaneous presence of a few nodes (the hubs) linked to many other nodes,
and a large number of poorly connected elements (the leaves). Each of these
network-classes occurs in specific cases; there are, however, other topological
classes which will be referred to, in the following, when they will be eventu-
ally mentioned. Up to the eighties, the current opinion was that practically
all networks representing real world structures (from social to technological
networks) could be ascribed to the class of Random networks. After all, they
were thought of as resulting from unsupervised growth processes and, as such,
believed to be produced by a growth mechanism where new nodes stuck ran-
domly to existing nodes (random-growth mechanisms). Relevant studies, at
the end of the last decade, have shown the inadequacy of this scenario to
represent the topological features of real networks: they have demonstrated
that, although resulting from unsupervised growth processes, a large number
of networks grow under the action of some effective selective pressure whose
resulting effect is the realization of a structure more appropriately ascribed
to the SF class [7] .
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1 A Complex System’s View of Critical Infrastructures 7

From the knowledge of the network’s graph, many different topological
properties can be deduced which further specify the network’s properties and
characteristics. These data allow to design specific growth mechanisms able
to design networks with desired topological properties. For comprehensive
reviews on the proposed growth mechanisms to reproduce networks with dif-
ferent topological structures, the reader is referred to Refs. [7, 9].

1.4 Critical Infrastructures as Networks

In this work, we will attempt to analyze available data of several CIs by using
the methods and the ideas of topology analysis. According to the definition
of CIs given previously, the following technological infrastructures may be
certainly ascribed to the CI set:

• Public power supply networks
• Telecommunication networks
• The Internet

In the following sections, we will apply the methods of graph analysis to
the graphs resulting from the available data of the technological networks of
the above mentioned CIs.

1.4.1 Public Power Supply Networks

The Power Grid

The public power supply network transmits power from generation to loads
thereby providing the link between producers and consumers. The network
connects large numbers of generators and loads together thus (i) improving
the reliability of the power supply, (ii) reducing needs for reserve, peak, con-
trol and storage capacity, (iii) enabling more efficient and economic power
production, and (iv) providing a necessary platform for the electricity mar-
ket. The strengthening of the cross border transmission capacity has made the
public power supply network increasingly international and spatially very ex-
tended. The power supply network is an essential, but often very international
part of the national critical infrastructure.

The power supply network is hierarchically organized to transmission and
distribution networks. Transmission networks cover very wide geographical
areas, and have typically very high voltage levels and large power flows. Dis-
tribution networks, on the other hand, connect the loads and distributed gen-
eration with the transmission network. The distances are traditionally shorter
and the voltage level lower than in the transmission network. Distribution net-
works are normally organized in a radial way, although redundancy is provided
by a meshed network topology. Low voltage customers are connected to the
distribution network via low voltage distribution networks.
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About one third of the cost of power supply comes from the distribution of
power. The power distribution network has also a much higher impact on the
reliability and power quality than the power transmission network. Failures
on the transmission network are relatively rare, but their impact spreads over
much wider areas than those occurring on distribution networks.

A power network is characterized by the fact that it has very little buffer-
ing storage capacity and the physical balance of supply and demand must
be maintained, otherwise the power transmission system will collapse. The
deregulated electricity market is an important tool for finding a cost efficient
initial solution for this balancing problem. Operation of the power network
is highly and increasingly dependent on protection, automation, information
and communication systems.

Distributed generation, intermittent generation from renewable energy
sources (e.g. wind energy), pressures to cost reduction and power quality im-
provements, ever bigger generation and transmission units are expected chal-
lenges to the power network. This calls for significant changes in the power
distribution systems and their automation and operation, but the power dis-
tribution systems have much inertia. The required lifetime of the power net-
work related investments is very long. Thus rapid fundamental changes are
seldomly possible.

Topological Analysis

From the topological point of view, the graphs representing electrical trans-
mission networks cannot be properly ascribed to random nor to SF networks.
In fact, as it happens for networks whose structure is constrained (i.e. by geo-
graphical reasons) or that cannot present an arbitrarily large node’s degree (as
for roads, for instance, where there is a very low maximum degree), electrical
networks have a Gaussian shape, with a heavy exponential tail that drops the
values of the highest degrees to smaller numbers (for electrical transmission
lines the maximum degree of a node is usually of the order of 10) [12–14].

The electrical network which has been widely studied in recent years, and
which will also be the object of the present analysis, is the Italian high-
voltage (380 kV) electrical transmission network (HVIET hereafter). A graph
of HVIET, as deduced from publicly available data, is depicted in Fig. 1.2,
and it consists of N = 310 nodes and L = 361 links (transmission lines). In
fact there are different node types; generators (117), loads (139), and junc-
tions (54), but a distinction between them will not be made in our analysis.
Moreover, 14 (of the total 361) links are double (transmission) lines.

Several topological analysis have been performed on the HVIET network.
One of the relevant properties of the network, allowing to classify the topol-
ogy of the network, is constituted by the distribution of the node’s degree k
(the degree is the number of links connecting each node to its nearest neigh-
bors). The distribution of node’s degree of HVIET is reported in Fig. 1.3 which
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1 A Complex System’s View of Critical Infrastructures 9

Fig. 1.2. Graph of the Italian high-voltage (380 kV) transmission network, where
nodes are located at approximately correct geographical location. The 6 links located
in the central region of Italy and represented by thick solid links correspond to the
first critical section (min-cut selection) that divides the network into two almost
equal-in-size parts (as indicted by the dark and white node symbols). Different node
types (generators, loads and junctions) are not distinguished.

confirms that HVIET does not show neither a clearcut SF nor a random char-
acter. The network has a limited number of hubs, whose maximum degree is
kmax = 11. Another property which has been measured on the HVIET net-
work is the average clustering coefficient C5, which measures the propensity
of nodes to form small-scale communities (c.f. Refs. [7, 8] for additional de-
tails and formal definition). The clustering coefficient C is large when nodes,
neighbors of a common node, are also neighbors of each other, i.e., if node
1 is connected to node 2, and 2 to 3, then, if C is large, there is a relatively
high probability that node 1 is also connected to node 3. Hence, we see that
C measures in some sense the (relative) number of connected triangles in the
network. In the HVIET network, the tendency to form connected triangles is
rather small, and the clustering coefficient is as small as C = 2.06× 10−2 (we

5 Notice that some authors refer to this same effect as network transitivity [8].

 A Complex System’s View of Critical Infrastructures 
Buchreihen Understanding Complex Systems 
Verlag Springer Berlin / Heidelberg 
ISSN 1860-0832 (Print) 1860-0840 (Online) 
Volume 2008 
Buch Managing Complexity: Insights, Concepts, Applications 
DOI 10.1007/978-3-540-75261-5 
Copyright 2008 
ISBN 978-3-540-75260-8 
DOI 10.1007/978-3-540-75261-5_11 
Seiten 241-260



10 V. Rosato et al.

1 10
k

0.001

0.01

0.1
P(

k)

Fig. 1.3. The degree distribution, P (k) vs. node degree, k, (in log-log scale) for the
HVIET network depicted in Fig. 1.2.

will later see in Sec. 1.4.2 that, for instance, the clustering in the backbone of
the Internet can be orders of magnitude higher).

An interesting result on HVIET has been evaluated by using the min-cut
theorem associated with the spectral analysis of the so-called Laplacian L. In
order to define this matrix, let us start by introducing the adjacency matrix,
A, who’s matrix elements, Aij , take the value 1 if node i and j are connected,
and 0 otherwise [8]. Then, in terms of A the (symmetric) Laplacian matrix is
defined according to

Lij =

{

∑N

k=1 Aik, if i = j
−Aij , if i 6= j

(1.2)

An interesting result that can be obtained from the spectral analysis of
L can be stated as follows: The signs of the components of the eigenvector
associated with the first non-vanishing eigenvalue of the Laplacian allow to
optimally bisecate the network. As L is symmetric, the first eigenvalue is
always vanishing. The n components of the eigenvector vL

2 = (v1, v2, ..., vn)
associated with the second eigenvalue, solve the one-dimensional quadratic
placement problem of minimizing the function

z =
1

2

n
∑

i=1

n
∑

j=1

(vi − vj)
2Aij . (1.3)

The vector is subjected to the constraint |v| = (vTv)
1

2 = 1 [15]. The
process allows to partition the graph G = (N, L) into disjoint subsets G1
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1 A Complex System’s View of Critical Infrastructures 11

and G2 such that L12/(N1 · N2) is minimized, where L12 is the number of
links to be removed and N1 and N2 are the number of nodes in the two
resulting subnetworks. It comes clear that this procedure allows for the “op-
timal” bisectioning of the graph, i.e. it forms the closest possible subnet-
works G1 and G2 with the minimum amount of broken links L12. If one
applies the min-cut procedure, one gets the following bisection: the HVIET
network is divided into two, connected, parts HVIET1 and HVIET2. The
first is formed by N(HVIET1) = 195, and the second by N(HVIET2) = 115
nodes. The two parts are separated by only six links; The removal of these
links allows to totally bisecate the network, which would separate it into two,
non-communicating, parts (see Fig. 1.2). The ideal line, joining the location of
the removed links, has been called first critical section. Indeed, there are sev-
eral other lines of cut of the network, grouping a set of links whose removal
produces a bisection of the network. These sets, although being composed
(in some cases) by a lower number of links, do not minimize the function
of Eq. (1.3) and, ultimately, are less efficient in separating the graph into
two (almost) equal parts. This is a major outcome of the spectral analysis;
this provides a way to locate the critical vulnerability lines of the network.
The procedure can be iterated on the different components of the graphs, by
creating critical sections of higher orders. If on a simple graph, the min-cut
procedure can be almost done by visual inspection, for larger graphs it cannot
be simply performed by any other mean.

Relevant information on the robustness of a network can be gained by
simulations. Starting from the graph structure, for instance, one can evaluate
what is the probability of physically disconnecting one (or more) nodes by
disconnecting one (or more) lines. This will produce a qualitative evaluation
of the structural robustness of the network. The knowledge of further technical
details on the network (i.e. the electrical characteristics of lines) allows the
formulation of a dynamical model for the power transport on the network. A
recent work [16] has attempted to reproduce the flow on the HVIET produced
by a given gauge of injected/extracted electrical power by/from the different
nodes and by the real electrical admittance of the different electrical lines.
The availability of such information opens the way to evaluate the so-called
flow vulnerability. If one eliminates a given number of lines, the dynamical
model allows to evaluate the new flux distribution; in case of overtaking given
threshold of maximum flux on the lines, the flow equations are re-evaluated by
starting from a different gauge of injected/extracted electrical power. When
relevant lines are missed, the network must undergo a severe reduction of
the injected power in order to be able to correctly sustain the power flux.
If one associates the amount of power reduction to re-establish the flux to
the specific removed line, one can classify the different lines as a function
of the damage that their absence produce to the whole network. If applied
to HVIET, this procedure allows to obtain a classification of the lines as a
function of the damage which their absence is able to produce (which can be
as large as 1.5GW, see Fig. 1.4).
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Fig. 1.4. Lines of HVIET whose removal is associated to the largest injected power
reduction: The illustration shows on the abscissa the number of the power line, on
the ordinate the amount of injected power (in MW) to be reduced to re-establish a
correct power flux in the network.

1.4.2 The Internet

Organizational Issues

The Internet should be known (and appreciated) by all of us, and therefore
probably does not need any further introduction. In the following, by the
term “the Internet” we will be referring to the network formed by the so-
called Autonomous System (AS) router level [17]. An AS is a collection of IP
networks and routers under the control of one entity (or sometimes more) that
presents a common routing policy to the Internet. Therefore any sub-network
appears as an AS, and the important difference between Intra-AS routing
and Inter-AS routing must be introduced. The entity that controls an AS can
choose the routing protocol to be used inside it, so in general AS can use
different routing protocols. But in order to make interconnectivity between
AS possible, each AS must employ one or more routers to interface with
the “outer world”, in order to informing it of the AS presence and topology.
Usually there are specifically designated routers dedicated to accomplish this
task — the so called Border Routers. Clearly these routers must adhere to
the Internet rules and protocol set (explained further on). Thus, the AS-level
routers form the backbone of the Internet which speaks the same language
(i.e. adhere to the same protocol).

Since the first Internet connection was made on June 6, 1969, its size
and complexity has grown dramatically. A recent paper examined the growth
rate for nodes (gn) and links (gl) of such a network during the end of last
decade [12], and it was found that gn ∼ 140 nodes/month and gl ∼ 300
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Data set N L γ C kmax d 〈dij〉
〈

drand
ij

〉

DIMES 14154 38928 2.41 0.41 1932 9 3.343 5.606

ROUTEVIEWS 11461 32730 2.35 0.35 2432 9 3.565 5.712

Table 1.1. Relevant topological properties of the DIMES and the RouteViews In-
ternet network data. N denotes the number of nodes of the network, L the number
of links, γ the exponent of the degree distribution (see Eq. (1.1)), C the clustering
coefficient, kmax the maximum degree of a node (the largest hub of the network), 〈k〉
the average degree, d the diameter of the network (the largest inter-node distance)
and 〈d〉 the average node’s separation,

〈

drand
ij

〉

the average node’s separation of a
random network of equal N and 〈k〉.

links/month. It is worth recalling that a new AS-level router corresponds to
the introduction of a new subnetwork which can also contain thousands of
(internal) nodes.

Topological Data

To get accurate data on the topology of the Internet is difficult. In fact, the
Internet should be measured “from its inside”, since no one has the complete,
up-to-date map of it. This need has prompted a number of large-scale projects
aimed at “mapping” the Internet in the most accurate way. Examples of such
projects are the DIMES [18] and the RouteViews Projects [19].

Data which will be referred to in the present work have been collected from
the DIMES project funded by the EU. They refer to a snapshot of the map
taken at a given date (July 2005). A repository of several snapshots, collected
at different times, is also contained in the projects web site. These are useful in
order to monitor the growth of the network (or, at least, its time variation);
These data could be used to infer growth mechanisms underlying the time
variation of the network’s properties (size, degree, clustering etc.) [12].

Other less accurate data sets of the Internet, but covering a larger geo-
graphical region, can be found in e.g. Ref. [20].

Topological analysis, and Network Growth Models

Topological analysis to evaluate the major topological properties have been
performed on the DIMES network and, for comparison, on similar data taken
from the repository of a US-funded project (RouteViews). Data collected on
the two sets of data (DIMES and RouteViews) are reported in Table 1.1.

Several points of Table 1.1 need to be highlighted. First of all the small
characteristic path length 〈dij〉 (which should be compared to its predicted
value for a random network of a similar dimension

〈

drand
ij

〉

(
〈

drand
ij

〉

=
log N/ log 〈k〉). This is a quite controversial point in the literature. Stand-
ing on their analysis, some authors have claimed an Internet characteristic
path length higher than that predicted for a random networks [21], others
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Fig. 1.5. The degree distribution, P (k) vs. node degree, k, (in log-log scale) for the
DIMES data.

have measured a slightly lower diameter [7]. Then the large clustering coef-
ficient, C, of the network which measures the propensity of nodes to form
small-scale communities (Refs. [7, 8]). SF networks do not necessarily have
large C values. Thus is a peculiar feature of the Internet network and of many
social networks [7]; other Critical Infrastructures (such as Power grids) do not
share this feature.

DIMES shows, as expected, a distribution of node’s degree which properly
fits a power-law with exponent γ = 2.41 (Fig. 1.5).

In order to summarize the observations made concerning the node’s de-
gree distribution and of the large clustering coefficient, we have attempted
to define an “empirical” growth mechanisms allowing to reproduce the In-
ternet topology. We succeded in this task by using a suitable combination
of the Preferential Attachment (PA) [7] and the Triad Formation (TF) [22]
mechanisms, the first allowing a SF network to be produced, the second able
to account for an arbitrarily high value of the clustering coefficient. If, in a
growth mechanisms where, starting from an initial set of n nodes, we wish to
add a new node, we define that P(n+1)→j is the probability that the new node
(n + 1) sticks on the node j belonging to the network, it will be as follows:

P(n+1)→j = (1 − β)PAα + βTF. (1.4)

It means that the new node will stick with a probability (1− β) with a mod-
ified PA algorithm (indicated as PAα or with probability β with a TF mech-
anism) [23]. The value of the parameters providing the best agreement with
the DIMES data set are: α = 1.44 and β = 0.93.
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Our speculations follow a previous attempt made on the issue of modeling
the Internet’s large-scale topology [24]. The authors pointed on a modification
of the PA mechanisms by introducing a further dependence on the distance
among nodes: highly connected nodes are favoured if geographically close.
With this assumption, links to far away nodes are discouraged while clustering
is favored because node’s proximity tends to enhance the establishment of links
particularly among neighboring nodes.

The Random Walk Approach

In the previous sub-subsection, we saw that one could characterize the “clus-
teredness” of a network by, e.g., the clustering coefficient C. However, given
a network topology, how can one identify the nodes belonging to the same
cluster? For large networks, like the Internet, this is a highly non-trivial (and
often computationally daunting) task. Recently, several dedicated numerical
algorithms have been proposed with this purpose in mind [7–9, 25–30]. Here
we do not intent to present a full overview of such clustering-algorithms, but
instead outline a particular approach based on diffusion or random walkers.

To motivate this algorithm in simple terms, let us consider the following
mental image; Assume the (very hypothetical) scenario that a car driver is
located randomly somewhere in North-America, without the ability to gain
information about direction from traffic signs, maps etc. Whenever he ap-
proaches a cross road, he randomly picks (with equal probability) one of the
possible connecting roads. In this way, the driver randomly moves around on
the road network without being assisted by any directional information that
we all are so used to benefiting from. If the main aim of our “random driver”
is to reach a given destination in, say, South America, you can probably easily
guess, that the drivers strategy is far from being optimal. The driver will most
probably find himself driving around in North America for a very long time,
simply because there are relatively few roads “connecting” North and South
America. In other words, the random driver will spend most of his time in
the “northern” cluster where he started off. There is only a small probability
that he will find his way through the bottleneck, here represented by Central
America.

If there is not only one (random) driver, but instead a large number of
them, one may ask for the relative fraction of drivers being at a particular
node i at time t. This fraction, or density, is simply ρi(t) = Ni(t)/N where
Ni(t) is the number of drivers at node i at time t, and N is the total number of
drivers. If the system is evolving according to the random dynamics outlined
above, one may suspect that the walker density in highly connected regions of
the network, i.e. within a cluster (if any), will reach an almost constant value
much faster than in not so highly connected regions of the network. It was
this suspicious that, in the first place, lead us to consider it as a candidate for
a clustering detection algorithm.
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Given the underlying network topology, the process of the random drivers
(or walkers) can easily be formulated mathematically, and the suggestions
made above can be confirmed within a solid framework. The process is math-
ematically described by the “diffusion-like” equation [28–30]:

∂tρ(t + 1) = Dρ(t) (1.5)

where ρ(t) is the density vector of walkers at time t, and D a matrix that
can be called the diffusion matrix (operator) for the system. This matrix is
related to the adjacency matrix Aij in the following way Dij = Aij/kj −
δij , where kj refers to the degree of node j, and δij is the Kronecker delta
function. Notice that D is non-symmetric, unlike the adjacency and Laplacian
matrices (1.2). The solution to Eq. (1.5) should be readily obtained as the
linear combination of v(α)exp

(

−λ(α)t
)

where v(α) and λ(α) are corresponding
pairs of eigenvectors and eigenvalues, respectively, of the diffusion matrix.
The index α is used to label the ordered sequence of eigenvalues so that
α = 1 corresponds to the largest one (that can be shown to be exactly one),
α = 2 to the next-to-largest one, and so on. Hence one realizes that the terms
corresponding to increasing α’s (where λ(α) > 0) correspond to faster-and-
faster decaying modes of the system. The interpretation of this observation
is that the largest α’s different from one (the slowly decaying modes), can be
related to the large scale topological features of the network. This has been
demonstrated in recent publications [28–30] by plotting e.g. the current of

walkers, c
(α)
i = ρ

(α)
i /ki, leaving node i for an increasing number of modes

α. For a given (small) mode α 6= 1, the signs of the corresponding currents,

c
(α)
i , indicate a partitioning (into two parts) that may, or may not, correspond

to a well-defined module or cluster for the network. To determine if a given
partitioning can be characterized as a module we have used the so-called
modularity measure. It is defined, given a (predefined) partition, as essentially
the total number of links falling within modules minus the expected number
of links for an equivalent network where links are placed at random [31–34].

If the modularity for a given partitioning is large, one says that the par-
titioning represents a “good” modular structure, otherwise not. By repeating
this process for higher and higher (diffusive) modes, α, a rather rich commu-
nity structure can be identified (cf. Ref. [30] for additional details).

We will now analyze the topology of the Internet by this random walk
current mapping technique. In the following we will consider an AS-data set
obtained from Ref. [20]. It consists of about 6 500 nodes from various parts of
the world. Fig. 1.6 shows the 2-dimensional current mapping of the network
using the two slowest decaying diffusive modes, i.e. α = 2, 3. All AS-systems
have been labelled with black dots. Later all nodes from some selected nations
have in addition been labeled differently for convenience. The star-like struc-
ture indicates that there is a hierarchy of vertices where those located the
furthest away from the origin of the current plot are the most peripheral ver-
tices of the network. Furthermore, each hierarchy corresponds roughly to the

 A Complex System’s View of Critical Infrastructures 
Buchreihen Understanding Complex Systems 
Verlag Springer Berlin / Heidelberg 
ISSN 1860-0832 (Print) 1860-0840 (Online) 
Volume 2008 
Buch Managing Complexity: Insights, Concepts, Applications 
DOI 10.1007/978-3-540-75261-5 
Copyright 2008 
ISBN 978-3-540-75260-8 
DOI 10.1007/978-3-540-75261-5_11 
Seiten 241-260












