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Abstract— We introduce a stochastic model that describes
the quasi-static dynamics of an electric transmission network
under perturbations introduced by random load fluctuations,
random removing of system components from service, random
repair times for the failed components, and random response
times to implement optimal system corrections for removingline
overloads in a damaged or stressed transmission network. Weuse
a linear approximation to the network flow equations and apply
linear programming techniques that optimize the dispatching of
generators and loads in order to eliminate the network overloads
associated with a damaged system. We also provide a simple
model for the operator’s response to various contingency events
that is not always optimal due to either failure of the state
estimation system or due to the incorrect subjective assessment
of the severity associated with these events. This further allows us
to use a game theoretic framework for casting the optimization
of the operator’s response into the choice of the optimal strategy
which minimizes the operating cost. We use a simple strategy
space which is the degree of tolerance to line overloads and
which is an automatic control (optimization) parameter that can
be adjusted to trade off automatic load shed without propagating
cascades versus reduced load shed and an increased risk of
propagating cascades. The tolerance parameter is chosen to
describes a smooth transition from a risk averse to a risk taken
strategy. We present numerical results comparing the responses
of two power grid systems to optimization approaches with
different factors of risk and select the best blackout controlling
parameter.

PACS: 89.75.-k, 05.10.-a, 02.50.-r

I. I NTRODUCTION

It is well-known that power grids are among the largest and
most complex technological systems ever developed. These
systems suffer periodic disturbances at various scales andsome
times these disturbances are so large to affect a considerable
fraction of the power grid and induce considerable economic
and social costs. For this reason, the vulnerability of power
grids and more generally of interconnected transportationand
communication networks has been recently studied exten-
sively. In order to understand the global dynamics of power
system blackouts a computationally efficientglobal system
analysisapproach is required in order to capture the overall
response of the system to such events [4], [11]. Moreover,
because this approach should be able to describe the random
sequences of rare events that trigger large blackouts, it should
have a stochastic character. On the other hand, any probabilis-
tic risk assessment requires a large number of long simulations
in order to determine the thought after risk indexes. Unfortu-

nately, because the probability of these events is very low,it
is very difficult to model the full complexity of the network’s
dynamics over the very long time scales that are necessary for
describing these rare events. One way to approach this difficult
problem is to include simple, but representative, models for
each component of this large and complex system as required
in order to understand the global dynamics of power system
blackouts. This is the approach followed by Dobson and
coworkers [10], [4], [2], [3], who introduced a model that does
not attempt to simulate the complex details of each blackout
event, which may be comprised of complicated processes
involving protection systems, dynamics, and human factors.
Instead, the blackout cascades in this model are essentially
instantaneous events due to dynamical redistribution of power
flows and are triggered by probabilistic failures of overloaded
lines. The size of blackouts is determined by solving a standard
LP optimization of the generation dispatch, consistent with
the power flow equations and operational constraints, and the
redistribution of power flows is calculated using a linear load
flow approximation.

Thorp and his collaborators [31], [1], [8] perform a reli-
ability study of transmission system protection devices using
linear load flow approximation and linear programing opti-
mization of generation dispatch and load shedding operations.
Their approach uses a probabilistic model to simulate the in-
correct tripping (sympathetic tripping) of lines and generators
due to hidden failures of line or generator protection systems.
The distribution of power system blackout size is obtained
using importance sampling and blackout risk assessment and
mitigation methods are also studied.

In another model, Rioset. al. [26] propose a probabilistic
cost/benefit analysis and calculate the expected blackout cost,
which they equate with the value of grid security, using Monte
Carlo simulations of a power system model that represents
the effects of cascading line overloads, hidden failures ofthe
protection system, and power system dynamic instabilities. In
this approach the authors replace the complex time-dependent
modeling of transient instability with a sophisticated prob-
abilistic modeling using off-line computation of conditional
probabilities based on the fault type and its location with
respect to the vulnerability region of each generator.

Another example of advanced analysis of cascading fail-
ures and high-consequence contingencies, performed using
TRELSS software, is described by Hardimanet. al. [14].
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In its simulation approach mode, TRELSS simulates system
vulnerability to cascading failures which are initiated by
outages of lines, transformers, and generators due to overloads
and voltage violations. The nodal voltages are monitored
and if any load bus voltage magnitude becomes less than
a specified “voltage collapse” threshold, the corresponding
load is dropped. Similarly, voltages are controlled at generator
buses as well and if they become less than a specified
threshold, the corresponding generators are also tripped.Note
though, the different conceptual approach to estimating voltage
dependent effects, compared to the probabilistic approachof
Rios et. al. [26].

Ni et. al.[22] provide on-line risk-based security assessment
(OL-RBSA) for rapid quantification of the security level
associated with an existing or forecasted operating condition.
Their probabilistic approach condenses contingency likelihood
and severity functions into indexes that reflect probability
risks. These indexes include overload security (flow viola-
tions and cascading overloads) and voltage security (voltage
magnitude violations and voltage instability), while the risk
assessment involves both the modeling of uncertainty as well
as the modeling of severity functions assuming no operator’s
action (such as redispatch) occurs. The goal is to reflect the
consequence of the contingency and loading conditions, rather
than the consequences of an operator’s decision.

These studies emphasize the importance of building repre-
sentative stochastic models for the global system analysisof
network reliability and of cascading failure risk. It is surprising
that in most previous works, the modeling of the operator’s
response to these complex and often unpredictable contingen-
cies is very simple and, paradoxically, predictable. Because
it is difficult to manage the technical difficulties associated
with low-probability, high-impact events, modeling the often
imperfect operator’s response should be an important compo-
nent of the network reliability and blackout risk assessment. To
emphasize this fact, we point out that the systematic control of
large power systems in response to major contingency events
is effectively nonexistent. The methods used are expert-based
and are by rule not automated. Therefore, the inclusion of
a human decision maker is critical [17]. Moreover, because
most models generate only abstract blackouts, as sequences
of technical failures propagating in space but instantaneous in
time, they lack a faithful representation of the evolution of
these events in time. This is unfortunate because it prevents
us from using the sequence of system fluctuations, produced
during the often slow, initiating phase that precedes large
cascading events, to perform sophisticated pattern analyses
aimed at predicting a developing blackout event as an anomaly
detection problem.

Here we describe our first steps into the implementation of a
power grid dynamic model that incorporates simple stochastic
rules for the reliability of each grid component and offers a
better description of line outages and line restoration events
using a simple time-dependent approach. Unlike previous
models, this model describes the utility response to various
disturbances in an attempt to include a description of the hu-

man response to contingency events that is not always optimal
due to either failure of the state estimation system or due to
the incorrect subjective assessment of the severity associated
with these events. In particular, this model is expected to serve
as a general framework for a realist system-level analysis of
the power grid from the viewpoint of the theory of complex
networks [18], [29], [7], [20], [19], [12], [16], [32].

II. STOCHASTIC GRID MODEL

Our approach, inspired by the model introduced in [10],
[4], [2], [3], computes the distribution of power flows using
a linear load flow approximation, includes optimal generator
dispatch and load shedding operations in order to alleviate
operating contingencies, and models blackouts by overloads
and outages of transmission lines. Disturbances in the gridare
introduced by line outages due to unforeseen stochastic events.
In order to describe the evolution of cascading events in their
slow initiating stages, transmission lines failures in ourmodel
are due to line overheating due to excessive power flows.
To describe this effect we monitor the evolution of the line
temperature, and its slow dependence on flow redistributions,
using as a model the conduction of heat in rods of small cross-
section in which an electric current of constant strength is
flowing. Further contributing to the slow evolution of cascades,
is a line restoration model which prevents a damaged line from
being put back in service before a random restoration time
has passed. The model also has the ability to follow daily and
seasonal changes in demand, although these features have not
been used in the simple optimization experiments presentedin
this paper. We also provide a bounded rationality model for the
operator’s response that is some times suboptimal due to either
failure of the data acquisition equipment or due to the incorrect
subjective assessment of the severity associated with cascading
overloads. This further allows us to use a game theoretic
framework for casting the operator’s response optimization
into the choice of the optimal strategy which minimizes the
operating cost. In the stochastic model introduced here the
strategy space is defined by a line overload parameter which
describes a smooth transition from a risk averse to a risk taken
response.

The model and simulations were performed within the
framework offered by the Power System Analyzer (PSA) [33],
which is a suite of numerical tools developed at Los Alamos
National Laboratory to permit model building, simulation,
analysis, and graphical display of electric power transmission
networks. Before presenting the details of the simulation
algorithm we describe in detail each of the components of
the stochastic model.

A. Formulation of the DC power flow

We assume that the electrical transmission system operates
in steady-state conditions and that this assumption holds even
during the evolution of major disturbances in the system. This
is obviously an approximation which is violated during the
late stages of major disturbance events, but the model can be



modified to better describe these events by modeling voltage-
dependent phenomena.

In order to determine the steady-state operating conditions
of the power grid, we should solve the full nonlinear power
flow equations that provide information about the voltage
magnitudes and phases and the active and reactive power
flows along each transmission line. Unfortunately, since our
simulations involve numerous power flow solutions for a
power grid system that evolves in time under various random
perturbations, solving repeatedly the full nonlinear power flow
equations becomes computationally prohibitive. Moreover, we
are interested in estimating the statistical properties ofvarious
quantities that characterize the system’s response to these
perturbations, like the frequency distribution of blackout sizes,
their duration, the distribution of inter-event times, etc., which
also require the simulation of tens of thousands of blackout
events. In addition, we are interested in estimating the optimal
strategy necessary to mitigate the impact of blackout events.
To address this problem, the full nonlinear equations pose
very difficult nonlinear optimization problems. For all these
reasons, we have chosen to linearize the power-flow equations
and to solve instead the so called “DC” power flow equations
that connect the flow of real power to the voltage phases of
the system’s buses, which results in a completely linear, non-
iterative power flow algorithm [34].

The DC power flow can only calculate real (MW) flows
on transmission lines and gives no answers to what happens
to voltage magnitudes or reactive (MVAR) flows. Assuming
that all bus voltages phasors are 1.0 per unit in magnitude,
and defining the matrixB by Bij = −bij if i 6= j andBii =
∑

j 6=i bij , wherebij is the susceptance of the transmission line
joining busesi and j, the voltage phasesθi are the solution
of the linear power flow equationP = BΘ. Here,P is the
vector whoseN−1 components are the real powers injected at
each node, except for a reference node (slack node) for which
the injected real power is computed from the power balance
between total generation and total load. The vectorΘ is the
vector whose components are the voltage phases at each node
in the network except the slack node which has phase zero.
After solving the power flow equation for the vectorΘ, the
flow of real power along each transmission line is computed
from Pij = bij(θi − θj).

B. Random line failure model

We assume that cascades in the grid are triggered by random
line failure events and that lines fail independently of each
other. For a linel, its random failure events are described by
a Poisson process of constant rateλfl such that the number of
events in any interval of lengtht follows a Poisson distribution
with mean λflt. Hence, the number of events which have
occurred along linel up to time t, Nl(t), has the following
probability distribution:

Pl{Nl(t) = n} = e−λflt
(λflt)

n

n!
, n ≥ 0 , (1)

while its expectation is given by

EPl
[Nl(t)] = λflt , (2)

which shows thatλfl is the average density of failure points.
Assuming a constant reference rate per unit length,λf , for all
lines in the network, the failure rateλfl scales proportionally
with the line lengthLl and is given byλfl = λfLl.

In order to generate the random failure pointstn, n =
1, 2, . . ., we sample from the stochastic process of rateλfl.
The sampling process is very simple because the interval
x = tn − tn−1 between two consecutive failure points has
an exponential distribution of density [23],

fl(x) = λfle
−λflx . (3)

The first point in the sequence,t1, is sampled using the fact
that its random distance from the starting point of our sim-
ulation, t0, is described by the same exponential distribution
given by Eq. (3). Therefore, ifξ0 is sampled from distribution
(3) thent1 = t0+ξ0, and ifξ1 is another number sampled from
the same distribution thent2 = t1 + ξ1, and so on. Sampling
from an exponential distribution is numerically efficient,and
is described in [25].

The failure rate used in our simulations,λ = 0.0001,
has not been benchmarked to utility experience. Our model
assumes that failure events are independent in space and
time but these are approximations that can be relaxed. For
example, as we have already pointed out, hidden failures
in the protection system can cause intact equipment to be
unnecessarily removed from service (sympathetic tripping)
following a fault on a neighboring component. Moreover, a
component that failed yesterday is more likely to fail in a
similar way the next day. One way to include these temporal
correlations is to introduce a “hidden failure” (HF) state to
each protection device and a Markov model describing the
transition between the “ON”, “OFF” and “HF” states of the
device as suggested in [24]. Similarly, weather effects (storms,
hot weather, winds, etc) can induce correlated failures in space.
These effects can be easily included in our model due to
the dependence of the overloaded-line failure model on the
ambient temperature and wind velocity. Depending on the
weather conditions to which they are exposed, changes in the
failure ratesλfl can also be introduced as described in [26].

C. Overloaded-line failure model

In order to model the failure of transmission lines due to
loading over their transmission capacity, we consider the prob-
lem of conduction of heat in rods of small cross-section [6] in
which an electric current of constant strength is flowing. We
assume for simplicity that the transmission line is so thin that
the temperature at all points of its cross-section is the same.
We suppose that the transmission line has constant area of
cross-sectionω, perimeterp, thermal conductivityK, electrical
conductivityσ, densityρ, specific heatc, and diffusivityκ. We
further assume that the heat flux across the surface of the line is
proportional to the temperature difference between the surface
and the surrounding medium and is given byH(T−T0), where



T is the temperature of the line,T0 is the temperature of the
medium, andH is the surface conductance. The problem of
heat conduction then becomes one of linear heat flow in which
the temperature is specified by the timet and the positionx
measured along the transmission line. Indeed, balancing the
total rate of gain of heat in an element of volume bounded by
the cross-sections atx andx+dx to the rate at which it gains
heat across these faces minus the heat lost at the surface, we
find the following heat equation,

∂T (x, t)

∂t
= κ

∂2T (x, t)

∂x2
+ αI2 − ν(T (x, t) − T0) , (4)

whereν = Hp/(ρcω), α = 0.239/(ρcω2σ), κ = K/(ρc) and
I = P/V is the current in the line measured in amperes.

In order to estimate the surface conductanceH we will
assume that the loss of heat across the surface of the line is due
to forced convection. When fluid (gas or liquid) at temperature
T0 is forced rapidly past the surface of the line, it is found
experimentally that the rate of loss of heat from the surface
is given by H(T − T0), with a value of the coefficientH
that depends on the velocity and the nature of the fluid and
the shape of the surface [6]. For turbulent flow of air with
velocity u perpendicular to a circular cylinder of diameterd,
H = 8 × 10−5(u/d)1/2 cal/(cm2s K).

Assuming that fluctuations in power flows along the trans-
mission lines propagates much faster than any heat flow tran-
sients, and since the heat source is equally distributed along
the line, we can neglect the spatial variation in temperature
along the line in order to get a simple equation describing the
time evolution in the temperature of the line in term of the
power flowing through the line:

∂T (x, t)

∂t
= αI2 − ν(T − T0) . (5)

If the line is initially at temperatureT (0) and the power
flowing through the line has the constant valueP , the line
temperature evolves according to this simple equation:

T (t) = e−νt(T (0) − Te(P )) + Te(P ) , (6)

where

Te(P ) =
α

ν

P 2

V 2
+ T0 (7)

is the equilibrium temperature that the line will reach when
t → ∞. If at some moment the power flow changes, we reset
the clock and the initial temperature and use the same equation
to describe the evolution of line temperature starting fromthis
moment on.

A transmission line failure due to excessive heating, fol-
lowed by line sagging and tripping, will happen if the present
power flow through the line exceeds the maximum line rating.
For each linel, we denote byTcl the equilibrium temperature
corresponding to a constant power flow equal to the line rating
Pmax

l , i. e. Tcl = Te(P
max
l ). When the power flow through

the line changes such that the new power flowPl exceeds
Pmax

l , the line will start heating toward the new equilibrium

temperature. Since this equilibrium temperature exceedsTcl,
at some timetcl the line temperature will reachTcl and the
line will fail. The failure timetcl, measured from the moment
when the grid topology and the line flow has changed, can be
easily deduced from Eq. (6) and is given by

tcl =
1

ν
ln

Tcl − Te(Pl)

T (0) − Te(Pl)
. (8)

Let us further remark that the line rating,Pmax, and some
reference values foru and T0 are chosen to determine the
critical temperature of the line. This means that on colder
days, whenT ′

0 < T0, the line will reach its critical, failure
temperature, at a larger power flowP ′ > Pmax. Indeed, from
the equationTe(P

′) = Tc we get,

P ′ = Pmax

√

1 + (T0 − T ′
0
)
ν

α

(

V

Pmax

)2

. (9)

Similarly, on a windier day, whenu′ > u and thereforeν′ > ν,
the line fails when the power flow reaches a larger valueP ′

given by

P ′ = Pmax

√

ν′

ν
. (10)

It will be interesting to study how these weather effects, and
the associated fluctuations in wind and temperature across
a very large grid, will impact the risk of large blackout
events. As we remarked before, these changes induce spatial
correlation in the response of transmission lines to changes
in power flows and, when overloaded, in the estimated failure
times.

Finally, in order to keep the heat equation linear, we have
omitted on the right hand side of Eq. (4) a cooling term
that takes into account that each element of the surface of
the rod loses heat by radiation to the surrounding medium
— and provides cooling when the wind is absent. When this
term is included, the right hand side of Eq. (5) acquires an
additional cooling termH′p

ρcω (T 4−T 4

0
), whereH ′ is a constant.

When the heating of the line is small andT ≈ T0, we
can linearize this term and recover Eq. (5) with a corrected
constantν due to the fact thatH is now replaced withH+4H ′.
When the heating of the line is large, we cannot make this
approximation, the equation becomes nonlinear, and has to be
integrated numerically. We have chosen not to do this, but we
can easily include this effect at a reasonable computational
cost.

Figure 1 shows a fragment from the evolution of the power
flows and temperatures for two transmission lines during the
evolution of a power grid subjected to random failure events.
The dash-dotted lines represent the critical temperaturesand
the dashed lines the line ratings. The time segments were taken
after increased line flows due to random component failures
somewhere else in the network have induced the failure of
each line due to overheating. Both figures show the repeated
failure of the lines shortly after a restoration period. Since the
network has not fully recovered from the initial failures, each
line restoration produces overflows which will shortly induce
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Fig. 1. The evolution of power flow (dashed line) and temperature (dash-dotted line) for two transmission lines in a simulation example. The time is measured
in hours. The horizontal dash-dotted lines represents the critical temperatures at which each line failure due to overheating happens and the horizontal dashed
lines represent the power line ratings. Both figures show therepeated failure of the lines shortly after a restoration event. Since the network has not fully
recovered from the initial failures in other points of the network, each line restoration produces overflows which will shortly induce another overheating failure
event. These examples were chosen to show that a suboptimal restoration strategy produces only temporary relief for a stressed system.

another overheating failure event. In Figure 1 also we notice
that due to thermal inertia effects the temperature evolution
smoothes out the rapid power flow fluctuations.

D. Line restoration model

We choose a very simple line restoration model that assumes
that the restoration timetr has a constant component,c, plus
a random variablew that has an exponential distribution with
parameterλr, i. e.

tr = c + w , (11)

wherew is sampled from the following exponential distribu-
tion:

f(w) = λre
−λrw . (12)

We further assume thatλr is the same for all lines in the
system. The constantc introduces a minimum restoration time
that reflects the time to estimate which line was damaged
and to ensemble and dispatch a restoration crew, before the
restoration itself can take place. This model is not intended to
be accurate, its parameters were not fit to any utility time-to-
repair data, and was chosen for its simple parametrization.A
more sophisticated estimated repair time, with a large number
of parameters describing the type of component, its voltage,
and environmental, temporal, and utility stress conditions is
also an option implemented in our model, but which was not
used for the present simulations. At the end of the restoration
period for a damaged line the utility has a number of options
for reconnecting the line to the power grid. These options are
described in detail in the next subsection.

E. Utility response model

One of the goals of this modeling approach is to describe
the operator’s response to different contingencies, to estimate

the optimal operator’s response, and to evaluate how a sub-
optimal response impacts the risk of large blackout events.
The operator tries to minimize this risk by optimizing his
response in a game against “nature” which performs random
line failures or, more generally, random component failures,
that can induce one or multiple line overloads. The random
line (component) failure events are called type 3 events. When
such an event happens, the operator has the option to respond
with either deterministic or chance moves. For example, when
a line overload is produced the operator has the option to
either:

1) With probability p1 shut down the line and protect it
against failure and damage. We call this response a type
1 event.

2) With probability p2, reflecting an erroneous estimation
of the transmission line state, do nothing and let the line
reach its critical temperature. We call this “response” a
type 2 event.

3) With probabilityp3 perform a partial generation dispatch
and load shedding that can alleviate the overload.

Here the probabilities are such thatp1 + p2 + p3 = 1.
Unlike type 1 events, in which the line is not damaged, for

type 2 events the line is damaged and a random restoration
time necessary to fix the line must pass before it can be
restored in service. The restoration event is called a type 0
event. When reconnecting lines, the operator first determines
if there are islands in the system, which may be produced as
lines are severed during the evolution of the event. If this is the
case, it further determines if the reconnected lines join together
two, or more, islands in the system. When this happens, we
virtually restore the load demand to its initial value before
the start of the reconnecting event. Here, the idea is that line
restoration can fully recover the normal operating state ofthe



system and, therefore, fully serve the loads. This reflects the
fact that operator’s actions before the present restoration time
might have shed loads in order to alleviate some overloaded
lines observed in the system. It is also possible that, due to
insufficient generation capacity, load shed was required bythe
constraint of power balance within an island.

After these virtual restorations and after solving for new
power flows, the operator checks for the presence of over-
loaded lines. If there are no overloads, the line and load
reconnection was successful and the operator proceeds with
performing these operations by turning the virtual restorations
into real events. If there are overloads the operator has a
couple of options, for which we assign different probabilities
(p4 + p5 = 1):

1) with probability p4, reconnects lines even though this
process can induce overloads, of the lines themselves
(most probably) or somewhere else in the system;

2) with probabilityp5, performs another partial generation
dispatch and load shedding that can alleviate the over-
load.

In order to implement the partial generation dispatch and
load shed algorithm we have followed reference [2] and
formulated the operator’s response as an optimization prob-
lem in which we solve the DC power flow equations while
minimizing the following cost function:

C =
∑

i∈G

|Pi − Pi0| + W
∑

j∈L

(Pj − Pj0) . (13)

In this equationPi0 and Pj0 are generator and load values,
respectively, before turning on generator dispatch and load
shed, whilePi and Pj are generator and load values after
the overloads are removed. The cost function was chosen to
minimize a trade-off between the change in generation (first
summation over generator nodesG) and the load shed (second
summation over load nodesL) necessary to eliminate the
overloads. We assume that the cost of adjusting generators is
the same and that loads share the same priority to be served.
In order to force generator dispatch first, and simultaneously
minimize the load shed in a contingency, we set a high price
for load shed by choosingW = 100 as in [2]. While restoring
the loads after each contingency seems natural, generation
restoration reflects the idea that the generation distribution is
optimal from an economic view point and, for this reason,
we would like to also restore the state of the generators.
Even though the absolute value of the generation shift appears
in the optimization problem, this optimization problem can
be solved using linear programing techniques, following the
method introduced in [10].

The minimization of the cost function is performed subject
to the following constraints:

1) forcing an upper limit on the generator power:0 ≤ Pi ≤
Pmax

i , i ∈ G;
2) forcing the loads not to generate power:Pj0 ≤ Pj ≤

0, j ∈ L;
3) forcing the power flow through the line within aα

fraction of the line ratings:−αPmax
l ≤ Pl ≤ αPmax

l ;

4) forcing the total power generated to exactly balance the
total load demand:

∑

i∈G∪L Pi = 0.

We have introduced here a line overload parameterα which
allows us to further represent either a risk averse response,
whenα < 1, or a risk taking responseα > 1.

It is obvious that different choices for these probabilities can
implement a large variety of operator’s actions. For example,
by choosingp3 = 1, we dispatch with probability one and
we optimize the operator’s response by completely eliminating
line overloading events, assuming that this is our goal. Because
we can never eliminate the random line failure events, it is
possible that this response will not guarantee a long term
optimal response in reducing the average cost of cascading
events. By always shedding loads to eliminate overloads,
this response might produce numerous small cascades, whose
added cost could be quite large. Therefore, it may be possible,
as we discuss in Section V, to trade off the cost of small events
versus an increased probability of generating larger, but less
frequent, cascades, by not removing some line overloads.

III. S IMULATION ALGORITHM

The model is rich and complex in its possible behavior. In
order to deal with the large variety of events we have time-
ordered all events in an event list. There are a number of
different event types that can be generated during the evolution
of the system. The simulation begins by determining the time
of the first type 3 event for each transmission line. The first
type 3 event is initiating the event list. We have the possibility
to introduce random load perturbations which happen on a
time scale that is much smaller than the characteristic time
scale for random failure events. After each new random load
configuration we solve the power flow equations in order to
determine the new state of the system. If these fluctuations in-
troduce overloads, one of the utility response actions described
in Section II is chosen according to itsa priori probability.

When a failure event (type 3) is encountered, the line is
damaged and a random restoration timetr is drawn from
the probability distribution defined in the restoration model.
A restoration event (type 0) for this line is introduced intothe
event list at timet+ tr and a new random failure time for this
failed line is generated. The next type 3 event is determined
by finding the first type 3 event over all transmission lines
and is introduced into the event list. To keep this list small,
we always keep a single type 3 event in the event list, but the
type 3 event times for all lines in the network are stored in a
separate vector.

When an overloaded line is present in the system, there is
a probabilityp2 that the overloaded state of the line will be
missed by the utility operator, due to an erroneous estimation
of the state of the transmission line. As we know, this defines
a type 2 event. In this case, there is a time delay,tc, until
the line reaches the critical temperature, that corresponds to
its rating power, and fails. If the failure timet + tc happens
beforeany other event in the event list, we include this event
into the event list andremoveany other events of type 1 or
2 that follow. Because this event damages the line, a random



restoration time to fix the line must pass before it can be
put back in service. Therefore, we also compute a restoration
time tr, sampled according to Eq. (11), and a restoration event
corresponding to this line will be also included in the event
list at time t + tc + tr. As we have just remarked, restoration
events define type 0 events. The line can be restored onlyafter
time t + tc + tr, wheret is the present simulation time.

If t+tc comesafter any other event, then we do not include
this type 2 event in the event list, because a grid alterationwill
happen before it reaches its critical temperature. Indeed,earlier
events may either modify its time of reaching the critical
temperature, or may remove completely the overload and the
line will cool down toward an equilibrium temperature below
the critical temperature. For this reason, we also remove any
other events of type 1 or 2 that follow an earlier type 2 event.
We neverremove type 3 and type 0 events from the event list.

Alternatively, with probabilityp1, the operator shuts down
the line in order to prevent its tripping due to overheating.As
we have seen this defines a type 1 event. In this case, it is not
necessary to repair the line, which can be set back in service
according to the reconnection strategy described below at any
time after the present timet.

No line can be reconnected until a restoration event happens
because, as described in Section II, we assume that without a
line reconnection the state of the system has not improved in
order to prevent overloads in the reconnected lines or, possibly,
somewhere else in the system.

After each restoration (type 0) event, we choose to reconnect
all type 1 lines according to one of the reconnection strategies
presented in detail in Section II. Sometimes reconnections
result in overloads and, as a result, the utility may choose
to remove the reconnected lines in order to remove these
overloads and to restore the system to its old status before
reconnections were attempted. In this case, each restoration
event is written back into the event list as type 1 event and can
be reconnected again at a later time when another reconnection
events is encountered. For this reason, the event list will
contain many type 1 events before the present simulation time
t, for which reconnection attempts have failed.

Finally, at the beginning of a new event at event timet,
the line temperatures are determined based on the known
temperatures at the previous event (time step),t − dt, and
the dt time elapsed since the previous event. Thus, according
to Eq. (6), we update the temperature of linel to

Tl(t) = e−νdt(Tl(t−dt)−Tel(Pl(t−dt)))+Tel(Pl(t−dt)) .
(14)

Note that the power flowPl(t− dt) remains unchanged since
the previous event timet − dt.

IV. SAMPLE RESULTS FORCASCADING FAILURES

The first application of our time-event simulator is to look
at overloaded-line cascading failures. This section illustrates
a cascade simulation for a typical choice of the parameters
of the model. In order to simulate this cascade event we
only follow the evolution of real power flows and neglect

Fig. 2. Undamaged initial electrical power model.

the hourly load demand variations during the evolution of
the event. Our goal is to compare the cost, in terms of
load loss, of various mitigating responses in addressing the
emerging system problems. The operator’s response ranges
from choosing not to respond to eliminate overloads, to
implement suboptimal generation dispatch, to respond with
optimized system correction, i.e. generation dispatch andload
shedding, to eliminate overloads. The critical algorithmsof
the cascade simulation include estimating restoration time of
damaged components, estimating the time to disconnect for
overloaded lines, recovering (when possible) load previously
lost during contingency and islanding events, and attempting
to reconnect previously disconnected lines.

Figure 2 shows the undamaged initial electrical power
model. This transmission system consists of 100 nodes, 133
lines, 24 generators, and 5 interties (boundary conditions
representing external networks not included within the trans-
mission system). Small arrows indicate the direction of flow
of the real power. The model features a high-voltage (230-kV)
ring (light blue) that carries power to the lower voltage (138-
kV, pink) and (69-kV, dark blue) lines that deliver power to
the distribution network. The system is quite robust in thatit
generates more power than it uses, so it is a net exporter of
power, and it does not depend upon external sources of power.
About 2 GW of power are supplied to local customers.

Figure 3 shows the starting contingency where four 230-kV
lines are damaged and lost from service. This contingency was
chosen to sever the high capacity transmission paths between
the largest generators in the northern section of the model
from the southeast section of the model that has loads and
no generation. This contingency creates four overloaded lines,
two at about 120% loading and two at 108%. The two higher
loaded lines are disconnected 3.6 hrs after the initial failures
(see Figure 4). This shifts the power to create larger overload
of 70% and 50% that are disconnected at 3.8 and 4.2 hrs (see
Figure 5). This creates a situation where only one (overloaded)
path remains to supply power to the southeast part of the
model. This last line is disconnected (to protect it) at t = 4.23
hrs. This disconnection creates a black electrical island (i.e.,



Fig. 3. Starting contingency for electrical power model.

Fig. 4. Two higher loaded lines are disconnected.

Fig. 5. Three overloaded lines are disconnected.

Fig. 6. Estimated outage area.

no power can reach it). The estimated outage area is shown in
Figure 6. The electrical company loses 974 MW of customer
load at this time.

After the blackout begins, there are no overloads in the
system. Also several of the previously disconnected lines are
returned to service, but none of those lines connect the black
island to the working island. It is not until hour 25.5, when the
first one of the originally damaged 230-kV lines is replaced
and restored to service, that the black island gets reconnected
to the working network and all loads are recovered (with no
overloads in the network). This ends the effect of the cascade
event.

The result of this cascade example is summarized in Table I.
In the discussion above, if the utility opts to do nothing
after the initial four-line contingency, the relatively small
overloads that result are eventually automatically disconnected
to prevent them from being damaged, and the event cascades
to cause a blackout affecting almost a GW of customer load.
If, instead, the utility immediately sheds load after the initial
event, all overloads are eliminated by shedding 108 MW.
If one optimally sheds load and simultaneously adjusts the
generation within the utility, then only 73 MW need be shed.
The bottom line is that under the assumption of constant
demand, choosing not to respond to eliminate overloads in
the system can result in cascading failures where much larger
loss of customer load can result. If we were also simulating the
hourly variation in demand, the quantitative and possibly the
qualitative conclusions could vary depending upon whether
the initial contingency occurred during a period of demand
growth or demand shrinkage. Such load-variation effects can
be modeled using the new time-event simulator.

V. OPTIMAL RESPONSE

In this Section we discuss some of the features of the
stochastic model when the utility response to line overloads is
represented by the generation dispatch and load shed optimiza-
tion algorithm. We choose to vary the line overload parameter
α in order to describe a smooth transition from a risk averse
α < 1 to a risk taken response forα > 1.



TABLE I

RESULTSSUMMARY OF FOUR 230-KV-L INE CONTINGENCY

Approach Load Cost Outage Duration Effect

(MW) (hrs)

do nothing 974 21.3 cascade

blackout

shed load 108 25.0 load shed

for overloads waiting for repairs

shed load 73 25.0 load shed

and dispatch waiting for repairs

We want to test here two different optimization strategies
against the responseα = 1. The choiceα = 1 defines the
normal operating response represented by generation dispatch
and load shedding to restore line flows at their critical value
(line ratings). This should be compared toα < 1 case when the
operator prevents the lines from even reaching their thermal
ratings, orα > 1 when the operator decides to respond when
the line flows reach a threshold higher than the line ratings.
In the first case,α < 1, we trade off an increased load
shed versus a smaller risk of generating large cascades. In the
second case,α > 1, we trade off a smaller load shed versus
an increased risk of generating large cascades. The question
we ask is the following: Are there any model parameters for
which one of this choices performs better than the optimization
algorithm forα = 1? While we do not have as yet a complete
answer to this question, we present here the results of our
numerical experiments for the following model parameters:
λf = 0.0001,c = 3h, λr = 0.2h−1 and p3 = 1. We have
run our experiments for the power grid model of 100 nodes,
24 generators, and 5 interties, that we have already introduced
in Section IV. In order to compare the model responses for
differentα values we have estimated the cost of cascades per
unit time,C1, and the cost of cascades per event,C2. The cost
of a cascade, in MW hour, is defined as follows:

C =

∫ te

ts

∆P (t)dT , (15)

wherets is the time when cascade event starts, i. e. the power
served is less than the power demand,te is the time when the
cascade events ends with full service of the power demand,
and ∆P (t) is the power shed at timet during the cascade,
ts ≤ t ≤ te. In fact, the two cost functions we use can be
defined as

C1 =

∫ tf

ti
∆P (t)dT

tf − ti
, (16)

C2 =

∫ tf

ti
∆P (t)dT

N
, (17)

where ti is the starting time of the simulation,tf is the
ending time of the simulation, whileN is the number of
cascade events during the simulation time. Of course,C2 is
also the average cost of a cascade. Even though we call all

TABLE II

COMPARISON OF UTILITY RESPONSES WITH VARIOUS OPTIMIZATION RISK

FACTORS

α 0.90 0.95 1.00 1.10 1.20 1.30 1.40

C1 10.70 10.93 0.35 1.78 2.02 3.04 7.27

C2 4026 4193 178 937 1032 1498 2966

events that shed power in the system “cascades”, not all events
are cascading events in which a triggering failure produces
a sequence of secondary failures that lead to blackout of
a large area of the grid as presented in Section IV. An
exact characterization of the events, including their scaling
properties will be presented elsewhere.

The results of our numerical experiments are summarized
in Table II. For the set of model parameters used in our exper-
iments, the best response strategy is to implement the genera-
tion dispatch and load shed optimization with parameterα =
1, but we should remark that a globalα parameter is probably
not the most efficient implementation of this optimization idea.
We expect that choosing a line dependentα value, that takes
into account the importance of each line flow to the overall
power transport in the system, could provide a more successful
optimization strategy. For example, we can chooseα = 1 for
lines that carry the backbone of the power flow, and which will
probably generate large flow redistributions for eitherα < 1
or α > 1, and a smaller or largerα value for the rest of
the lines. A possible objection against this strategy can bethe
fact that the optimization approach proposed leads to damage
to equipment, but it is useful to remember that August14th,
2003 blackout cost billions of dollars in in economic losses
but caused negligible equipment damage [27]. It is possible
then that equipment damage that can significantly decrease the
social cost of blackout events is a feasible prevention strategy.
Moreover, one could conceivably extended this approach to
other parameters or to other optimization strategies that can
be used to assess vulnerabilities and to allocate protection
devices and preventive maintenance responses, as described in
[24]. The model can also be generalized to replace the unique
power grid operator with a network of distributed, autonomous
agents who share local information in order to coordinate their
local responses to finding good global optimization solution
as described in [15]. A decentralized approach may also
benefit from the information provided by the structure of the
underlying network of flows, as proposed in [20].

VI. CONCLUSION

As more vulnerable networks emerge, due to the introduc-
tion of deregulated energy markets, the demand for a more
reliable representation of the networks in order to correctly
assess the operational security level of the transmission system
will increase. At the same time, as the complexity of operating
the grid grows, modeling the operator’s response to these
challenging demands becomes increasingly critical and should
match in sophistication the modeling of the grid itself. For



these reasons, we have presented a model that attempts to pro-
vide a comprehensive representation of the complex behavior
of both the grid dynamics under random perturbations and the
operator’s response to the contingency events. This response is
not always optimal due to either failure of the state estimation
system or due to the incorrect subjective assessment of the
severity associated with these events.

Furthermore, we have cast the optimization of the operator’s
response into the choice of the optimal strategy for mitigating
the impact of random component failure events and, possibly,
for controlling blackouts. A first example was to test a genera-
tion dispatch and load shed algorithm for a range of risk factors
that were trying to balance the risk of load shed versus the
risk of generating large cascading events. This simple strategy
space can be easily extended and we have suggested a few
possible generalizations that are already the subject of intense
research.

Moreover, the model can be used to test the conjecture that
power grids operate close to a “critical” point as suggestedby
recent analysis of power system disturbance data [9], [5]. If
this is confirmed, some aspects of the response of the system
to random perturbations may have an universal character. In
this case, the dynamics of the stochastic model for different
parameters should exhibit the conjectured universal behavior.
An analysis of this conjecture is the subject of our current
research.
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