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Abstract—We introduce a stochastic model that describes nhately, because the probability of these events is very iiow,
the quasi-static dynamics of an electric transmission netork s very difficult to model the full complexity of the netwogk’
under perturbations introduced by random load fluctuations, dynamics over the very long time scales that are necessary fo

random removing of system components from service, random -  err
repair times for the failed components, and random response describing these rare events. One way to approach thistdiffic

times to implement optimal system corrections for removingine Problem is to include simple, but representative, modets fo
overloads in a damaged or stressed transmission network. Wese  each component of this large and complex system as required
a linear approximation to the network flow equations and appy  in order to understand the global dynamics of power system
linear programming techniques that optimize the dispatchihg of blackouts. This is the approach followed by Dobson and
generators and loads in order to eliminate the network overbads )

associated with a damaged system. We also provide a simpleCOV\lorkers [10], [.4]’ (2], [3], who 'ntmduced.a model thatedo
model for the operator’s response to various contingency @nts not attempt to simulate the Complex details of each blackout
that is not always optimal due to either failure of the state event, which may be comprised of complicated processes
estimation system or due to the incorrect subjective assasgnt involving protection systems, dynamics, and human factors
of the severity associated with these events. This furthedlaws us Instead, the blackout cascades in this model are essgntiall

to use a game theoretic framework for casting the optimizathn . tant ts due to d ical redistributi
of the operator’s response into the choice of the optimal sategy instantaneous events due to dynamical redistribution wfepo

which minimizes the operating cost. We use a simple strategy flows and are triggered by probabilistic failures of oveded
space which is the degree of tolerance to line overloads andlines. The size of blackouts is determined by solving a stechd

which is an automatic control (optimization) parameter that can | P optimization of the generation dispatch, consistentiwit
be adjusted to trade off automatic load shed without propagting Fhe power flow equations and operational constraints, aed th

cascades versus reduced load shed and an increased risk o distributi f fl . lculated usi i d
propagating cascades. The tolerance parameter is chosen tor€aistribution of power flows Is caiculated using a lineado

describes a smooth transition from a risk averse to a risk takn flow approximation.
strategy. We present numerical results comparing the respuses Thorp and his collaborators [31], [1], [8] perform a reli-
of two power grid systems to optimization approaches with apility study of transmission system protection deviceisgis
Fd)laflfr(;rrﬁgtef?ctors of risk and select the best blackout contolling  |inear load flow approximation and linear programing opti-
PACS: 89.75.-k, 05.10.-a, 02.50.r m|zgt|on of generation dlspatch _aqd load shedd_mg opmtlo.
Their approach uses a probabilistic model to simulate the in
correct tripping (sympathetic tripping) of lines and geaters
due to hidden failures of line or generator protection syste
It is well-known that power grids are among the largest anthe distribution of power system blackout size is obtained
most complex technological systems ever developed. Thesgng importance sampling and blackout risk assessment and
systems suffer periodic disturbances at various scales@néd mitigation methods are also studied.
times these disturbances are so large to affect a conslderabln another model, Riost. al. [26] propose a probabilistic
fraction of the power grid and induce considerable econongost/benefit analysis and calculate the expected blackmsit ¢
and social costs. For this reason, the vulnerability of powehich they equate with the value of grid security, using Mont
grids and more generally of interconnected transportaimh Carlo simulations of a power system model that represents
communication networks has been recently studied extahe effects of cascading line overloads, hidden failurethef
sively. In order to understand the global dynamics of powerotection system, and power system dynamic instabilities
system blackouts a computationally efficiegibbal system this approach the authors replace the complex time-depénde
analysisapproach is required in order to capture the overatiodeling of transient instability with a sophisticated Ipro
response of the system to such events [4], [11]. Moreovahilistic modeling using off-line computation of conditial
because this approach should be able to describe the rangwobabilities based on the fault type and its location with
sequences of rare events that trigger large blackoutspitlgh respect to the vulnerability region of each generator.
have a stochastic character. On the other hand, any prababil Another example of advanced analysis of cascading fail-
tic risk assessment requires a large number of long sinoul&ti ures and high-consequence contingencies, performed using
in order to determine the thought after risk indexes. Unfort TRELSS software, is described by Hardimah al. [14].

I. INTRODUCTION
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In its simulation approach mode, TRELSS simulates systaman response to contingency events that is not always optima
vulnerability to cascading failures which are initiated bylue to either failure of the state estimation system or due to
outages of lines, transformers, and generators due toaads| the incorrect subjective assessment of the severity asdci
and voltage violations. The nodal voltages are monitoredth these events. In particular, this model is expecte@dtoes
and if any load bus voltage magnitude becomes less thas a general framework for a realist system-level analykis o
a specified “voltage collapse” threshold, the correspapdithe power grid from the viewpoint of the theory of complex
load is dropped. Similarly, voltages are controlled at gatog networks [18], [29], [7], [20], [19], [12], [16], [32].

buses as well and if they become less than a specified

threshold, the corresponding generators are also trippetd 1. STOCHASTIC GRID MODEL

e e, O aproach, nspred by the model inoduced i 10
' [4], [2], [3], computes the distribution of power flows using

Rioset. al. [26]. ! L : .
Ni et. al.[22] provide on-line risk-based security assessmeagltIInear load flow approximation, includes optimal generato

(OL-RBSA) for rapid quantification of the security level Ispatch and load shedding operations in order to alleviate

associated with an existing or forecasted operating ciomdit operating contmgenme_s, _and_ model_s bIackouts_by oves_load
. o : - and outages of transmission lines. Disturbances in theaged
Their probabilistic approach condenses contingencyilikeld . : :
. ; . : ..introduced by line outages due to unforeseen stochastideve
and severity functions into indexes that reflect probapbili

risks. These indexes include overload security (flow violay order to describe the evolution of cascading events i the

tions and cascading overloads) and voltage security @Bltaslow initiating stages, transmission lines failures in madel

magnitude violations and voltage instability), while thekr are due to line overheating due to excessive power flows.

assessment involves both the modeling of uncertainty ak WE(I) describe this effect we monitor the evolution of the line

. . . . temperature, and its slow dependence on flow redistribsition
as the modeling of severity functions assuming no opesator”. ) .
. . ; sing as a model the conduction of heat in rods of small cross-
action (such as redispatch) occurs. The goal is to reflect t

e 2" ) . .
consequence of the contingency and loading conditiorhaeratsecuon in which an electric current of constant strength is
than the consequences of an operator’s decision. )

flowing. Further contributing to the slow evolution of cades,
These studies emphasize the importance of building rep'[J%f.’1 line restoratpn mod_el which prevents a damaged I_maf_ro
. : ._being put back in service before a random restoration time
sentative stochastic models for the global system anabfsis

network reliability and of cascading failure risk. It is puising has passed. The model also has the ability to follow daily and

that in most previous works, the modeling of the Opera,{Orsseasonal changes in demand, although these features have no

response to these complex and often unpredictable conntingt ?gn :S:;j \'/r\};g?:gmgsigggrg'g323gde)r(st?c:'nmaﬁtmsrn%rg:;gtretd
cies is very simple and, paradoxically, predictable. Bseau Paper. P y

it is difficult to manage the technical difficulties assoett operator's response that is some times suboptimal duettereit

with low-probability, high-impact events, modeling thetent failure of the data acquisition equipment or due to the irexr

imperfect operator’s response should be an important cemggbjecwe assessment of the severity associated witadag:

nent of the network reliability and blackout risk assessmem overloads. This further allows us to use a game theoretic

emphasize this fact, we point out that the systematic cbotro framework f_or casting th‘? operators response_o_pu_mmatlo
. . . into the choice of the optimal strategy which minimizes the
large power systems in response to major contingency events

: . : operating cost. In the stochastic model introduced here the
is effectively nonexistent. The methods used are expemedbas ateav space is defined by a line overload parameter which
and are by rule not automated. Therefore, the inclusion t{ gy sp y P

- e describes a smooth transition from a risk averse to a riskrtak
a human decision maker is critical [17]. Moreover, because

most models generate only abstract blackouts, as sequer{gé%onse'

; - L ; : del and simulations were performed within the

of technical failures propagating in space but instantaséo € mo
time, they lack a faithful representation of the evolution Jramework offgred by the Eower System Analyzer (PSA) [33],
ich is a suite of numerical tools developed at Los Alamos

these events in time. This is unfortunate because it prevefit . b . .

us from using the sequence of system fluctuations, produ t|ongl Laboratory to perm|t model bundlng, S|mul_a'g|on,

during the often slow, initiating phase that precedes lar alysis, and graphical dls_play of electr_|c power "ar_‘s““s_
etworks. Before presenting the details of the simulation

cascading events, to perform sophisticated pattern agmly ) L .
aimed at predicting a developing blackout event as an anom |gor|thm we describe in detail each of the components of
detection problem. the stochastic model.

Here we describe our first steps into the implementation of a .
power grid dynamic model that ?ncorporates Eimple stocimasf" Formulation of the DC power flow
rules for the reliability of each grid component and offers a We assume that the electrical transmission system operates
better description of line outages and line restoratiomtsve in steady-state conditions and that this assumption holds e
using a simple time-dependent approach. Unlike previodsring the evolution of major disturbances in the systenis Th
models, this model describes the utility response to variois obviously an approximation which is violated during the

disturbances in an attempt to include a description of the Hate stages of major disturbance events, but the model can be



modified to better describe these events by modeling voltagehile its expectation is given by
dependent phenomena.

In order to determine the steady-state operating condition Er[Ni®)] = Ant, 2)
of the power grid, we should solve the full nonlinear powewrhich shows that\¢; is the average density of failure points.
flow equations that provide information about the voltag@ssuming a constant reference rate per unit lengghfor all
magnitudes and phases and the active and reactive poles in the network, the failure rate;; scales proportionally
flows along each transmission line. Unfortunately, since owith the line lengthL; and is given by\y; = AfL;.
simulations involve numerous power flow solutions for a In order to generate the random failure points n =
power grid system that evolves in time under various random2, ..., we sample from the stochastic process of raje
perturbations, solving repeatedly the full nonlinear pofi@v The sampling process is very simple because the interval
equations becomes computationally prohibitive. Moreower = = ¢, — t,—1 between two consecutive failure points has
are interested in estimating the statistical propertiegaoibus an exponential distribution of density [23],
guantities that characterize the system’s response tce thes B “Ape
perturbations, like the frequency distribution of blacksizes, filw) = Ape ' (3)
their duration, the distribution of inter-event times,.etehich  The first point in the sequence,, is sampled using the fact
also require the simulation of tens of thousands of blackouat its random distance from the starting point of our sim-
events. In addition, we are interested in estimating thev@st ulation, ¢, is described by the same exponential distribution
strategy necessary to mitigate the impact of blackout evenjiven by Eq.[B). Therefore, &, is sampled from distribution
To address this problem, the full nonlinear equations pof®) thent,; = t,+&,, and if¢; is another number sampled from
very difficult nonlinear optimization problems. For all 8% the same distribution thety = t; + &;, and so on. Sampling
reasons, we have chosen to linearize the power-flow equatidom an exponential distribution is numerically efficieand
and to solve instead the so called “DC” power flow equations described in [25].
that connect the flow of real power to the voltage phases ofThe failure rate used in our simulationg, = 0.0001,
the system’s buses, which results in a completely linean; nchas not been benchmarked to utility experience. Our model
iterative power flow algorithm [34]. assumes that failure events are independent in space and

The DC power flow can only calculate real (MW) flowstime but these are approximations that can be relaxed. For
on transmission lines and gives no answers to what happesample, as we have already pointed out, hidden failures
to voltage magnitudes or reactive (MVAR) flows. Assumingn the protection system can cause intact equipment to be
that all bus voltages phasors are 1.0 per unit in magnitudamnecessarily removed from service (sympathetic tripping
and defining the matriB by B;; = —b;; if i # j andB;; = following a fault on a neighboring component. Moreover, a
Z#i bi;, whereb;; is the susceptance of the transmission lineomponent that failed yesterday is more likely to fail in a
joining busesi and j, the voltage phase® are the solution similar way the next day. One way to include these temporal
of the linear power flow equatioP = B®. Here,P is the correlations is to introduce a “hidden failure” (HF) state t
vector whoseV — 1 components are the real powers injected &ach protection device and a Markov model describing the
each node, except for a reference node (slack node) for whicansition between the “ON”, “OFF” and “HF” states of the
the injected real power is computed from the power balandevice as suggested in [24]. Similarly, weather effectsrss,
between total generation and total load. The ve€@ois the hot weather, winds, etc) can induce correlated failurepats.
vector whose components are the voltage phases at each nduese effects can be easily included in our model due to
in the network except the slack node which has phase zefte dependence of the overloaded-line failure model on the
After solving the power flow equation for the vect®, the ambient temperature and wind velocity. Depending on the
flow of real power along each transmission line is computedeather conditions to which they are exposed, changes in the
from P;; = b;;(0; — 0;). failure rates\y; can also be introduced as described in [26].

C. Overloaded-line failure model

B. Random line failure model In order to model the failure of transmission lines due to

We assume that cascades in the grid are triggered by rand8ffling over their transmission capacity, we consider toe@p
line failure events and that lines fail independently ofhaac!em of conductlc_)n of heat in rods of small cros;-secthn 6] i
other. For a lind, its random failure events are described byNich an electric current of constant strength is flowing. We
a Poisson process of constant raje such that the number of assume for simplicity that_ the transmission Img is s0 thiat t
events in any interval of lengthfollows a Poisson distribution € temperature at all points of its cross-section is theesam

with mean \;t. Hence, the number of events which havdVe suppose that the transmission line has constant area of
occurred along lind up to timet, N;(t), has the following cross-sectiow, perimetep, thermal conductivity<, electrical
probability distribution: conductivityo, densityp, specific heat, and diffusivityx. We

further assume that the heat flux across the surface of téslin
(A pit)" proportional to the temperature difference between thiaser

P{N.(t) = n} = efA”tT ;o n=0, (1) and the surrounding medium and is given8yT'—T, ), where



T is the temperature of the lind} is the temperature of the temperature. Since this equilibrium temperature excé&égs
medium, andH is the surface conductance. The problem aft some timet.; the line temperature will react,; and the
heat conduction then becomes one of linear heat flow in whithe will fail. The failure timet.;, measured from the moment
the temperature is specified by the timand the position:  when the grid topology and the line flow has changed, can be
measured along the transmission line. Indeed, balanciag #asily deduced from EqL](6) and is given by
total rate of gain of heat in an element of volume bounded by T — T.(P)

the cross-sections atandx + dzx to the rate at which it gains te = 1 In—————— . (8)
heat across these faces minus the heat lost at the surface, we v T(0) - Te(R)
find the following heat equation, Let us further remark that the line rating;***, and some
reference values for and T, are chosen to determine the
OT (z,1) 02T (z, 1) ) critical temperature of the_ Iine._ This means _t_hat on colder
5 gz Tl —v(T(xt)~To), (4 days, whenTy < Ty, the line will reach its critical, failure

temperature, at a larger power fld& > P™%*, Indeed, from

wherev = Hp/(pcw), a = 0.239/(pcw?o), k = K/(pc) and the equatiori, (P') = T, we get,

I = P/V is the current in the line measured in amperes.
In order to estimate the surface conductardtewe will v/ vV o\2

assume that the loss of heat across the surface of the lineis d P = Pm 1+ (T — Té)a (W) : 9)

to forced convection. When fluid (gas or liquid) at tempematu

Ty is forced rapidly past the surface of the line, it is foun&imilarly, on a windier day, when’ > v« and therefore’ > v,

experimentally that the rate of loss of heat from the surfatee line fails when the power flow reaches a larger valtie

is given by H(T — Tp), with a value of the coefficienti given by

that depends on the velocity and the nature of the fluid and P Pmm\/z

the shape of the surface [6]. For turbulent flow of air with o v’

velocity u pegpenditl:/UQIar loa ci2rcular cylinder of diametér ¢ i pe interesting to study how these weather effectg] an
H =8x107(u/d)"/* cal/(cm”s K). the associated fluctuations in wind and temperature across

Assuming that fluctuations in power flows along the trang; very large grid, will impact the risk of large blackout

mission lines propagates much faster than any heat flow rfe s As we remarked before, these changes induce spatial
sients, and since the heat source is equally distributengalq,, e (ation in the response of transmission lines to change

the line, we can neglect the spatial variation in tempeeatuy, ,oer flows and, when overloaded, in the estimated failure
along the line in order to get a simple equation describireg th o

time evolution in the temperature of the line in term of the Fin;ally
power flowing through the line: ’

(10)

in order to keep the heat equation linear, we have
omitted on the right hand side of Ed] (4) a cooling term
T (z,t) ) that takes into account that each element of the surface of
ot al” —v(T = T). (5) the rod loses heat by radiation to the surrounding medium
— and provides cooling when the wind is absent. When this
term is included, the right hand side of Effl (5) acquires an
additional cooling ternfZ2 (T —T;}), whereH' is a constant.
When the heating of the line is small arfd ~ T, we

can linearize this term and recover EQl (5) with a corrected

If the line is initially at temperaturd’(0) and the power
flowing through the line has the constant valite the line
temperature evolves according to this simple equation:

—vt
T(t) = e7"(T(0) = Te(P)) + Te(P), ) constant due to the fact thatf is now replaced with{ +4H'.
where ) When the heating of the line is large, we cannot make this
T,(P) = a b T @) approximation, the equation becomes nonlinear, and has to b
v V2 integrated numerically. We have chosen not to do this, but we

is the equilibrium temperature that the line will reach wheoan easily include this effect at a reasonable computdtiona
t — oo. If at some moment the power flow changes, we resebst.
the clock and the initial temperature and use the same equati Figure[l shows a fragment from the evolution of the power
to describe the evolution of line temperature starting fthm flows and temperatures for two transmission lines during the
moment on. evolution of a power grid subjected to random failure events
A transmission line failure due to excessive heating, folFhe dash-dotted lines represent the critical temperatanels
lowed by line sagging and tripping, will happen if the preserthe dashed lines the line ratings. The time segments weea tak
power flow through the line exceeds the maximum line ratingfter increased line flows due to random component failures
For each ling, we denote byl.; the equilibrium temperature somewhere else in the network have induced the failure of
corresponding to a constant power flow equal to the linegatieach line due to overheating. Both figures show the repeated
prer i e. Ty = T.(P™*"). When the power flow through failure of the lines shortly after a restoration period.c®irthe
the line changes such that the new power flvexceeds network has not fully recovered from the initial failurescé
Pmer the line will start heating toward the new equilibriumiine restoration produces overflows which will shortly ircgu
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Fig. 1. The evolution of power flow (dashed line) and tempeeatdash-dotted line) for two transmission lines in a satiah example. The time is measured
in hours. The horizontal dash-dotted lines represents ritieat temperatures at which each line failure due to ogatimg happens and the horizontal dashed
lines represent the power line ratings. Both figures showrdipeated failure of the lines shortly after a restoratioanévSince the network has not fully
recovered from the initial failures in other points of thewerk, each line restoration produces overflows which wilbitly induce another overheating failure
event. These examples were chosen to show that a subopéstatation strategy produces only temporary relief forrassed system.

another overheating failure event. In Figlile 1 also we mrotithe optimal operator's response, and to evaluate how a sub-
that due to thermal inertia effects the temperature evmiutioptimal response impacts the risk of large blackout events.

smoothes out the rapid power flow fluctuations. The operator tries to minimize this risk by optimizing his
_ _ response in a game against “nature” which performs random
D. Line restoration model line failures or, more generally, random component fasure

We choose a very simple line restoration model that assuni@at can induce one or multiple line overloads. The random
that the restoration time. has a constant component,plus line (component) failure events are called type 3 eventseih

a random variablev that has an exponential distribution withsuch an event happens, the operator has the option to respond
parameten,., i. e. with either deterministic or chance moves. For example,rwhe

(11) @ line overload is produced the operator has the option to
either:

wherew is sampled from the following exponential distribu-

tion:

tr =c+w,

1) With probability p; shut down the line and protect it
Cvw against failure and damage. We call this response a type
flw) = Ape™? (12) 1 event.

2) With probability p,, reflecting an erroneous estimation

We further assume that, is the same for all lines in the L P2 . s
of the transmission line state, do nothing and let the line

system. The constantintroduces a minimum restoration time X " e .,
that reflects the time to estimate which line was damaged reach its critical temperature. We call this “response” a
and to ensemble and dispatch a restoration crew, before the tyPe 2 event_._ ) i )
restoration itself can take place. This model is not intene <) With probabilityp; perform a partial generation dispatch
be accurate, its parameters were not fit to any utility time-t and load shedding that can alleviate the overload.
repair data, and was chosen for its simple parametriza#ion.Here the probabilities are such that+ ps + p3 = 1.
more sophisticated estimated repair time, with a large reimb  Unlike type 1 events, in which the line is not damaged, for
of parameters describing the type of component, its voltaggpe 2 events the line is damaged and a random restoration
and environmental, temporal, and utility stress cond#i@® time necessary to fix the line must pass before it can be
also an option implemented in our model, but which was n@éstored in service. The restoration event is called a type 0
used for the present simulations. At the end of the restaratievent. When reconnecting lines, the operator first detezsin
period for a damaged line the utility has a number of optiomsthere are islands in the system, which may be produced as
for reconnecting the line to the power grid. These optioms afines are severed during the evolution of the event. If thihie
described in detail in the next subsection. case, it further determines if the reconnected lines jojetoer
two, or more, islands in the system. When this happens, we
virtually restore the load demand to its initial value before
One of the goals of this modeling approach is to descrilbee start of the reconnecting event. Here, the idea is that li
the operator’s response to different contingencies, tiones¢ restoration can fully recover the normal operating statéhef

E. Utility response model



system and, therefore, fully serve the loads. This refldads t 4) forcing the total power generated to exactly balance the
fact that operator’s actions before the present restaordiioe total load demandy _, ;. P; = 0.

might have shed loads in order to alleviate some overload@g have introduced here a line overload parametevhich
lines observed in the system. It is also possible that, duedfows us to further represent either a risk averse response
insufficient generation capacity, load shed was requirethby whena < 1, or a risk taking response > 1.
constraint of power balance within an island. It is obvious that different choices for these probabiitian
After these virtual restorations and after solving for neymplement a large variety of operator’s actions. For exampl
power flows, the operator checks for the presence of ovgy choosingp; = 1, we dispatch with probability one and
loaded lines. If there are no overloads, the line and l0ggk optimize the operator’s response by completely elinigat
reconnection was successful and the operator proceeds Wi overloading events, assuming that this is our goalaBse
performing these operations by turning the virtual restors e can never eliminate the random line failure events, it is
into real events. If there are overloads the operator hasy@ssible that this response will not guarantee a long term
couple of options, for which we assign different probaleift optimal response in reducing the average cost of cascading
(pa+ps =1): events. By always shedding loads to eliminate overloads,
1) with probability p4, reconnects lines even though thishis response might produce numerous small cascades, whose
process can induce overloads, of the lines themselv@s$ded cost could be quite large. Therefore, it may be passibl
(most probably) or somewhere else in the system; as we discuss in Secti@d V, to trade off the cost of small event

2) with probabilityps, performs another partial generatiorversus an increased probability of generating larger, &ss |
dispatch and load shedding that can alleviate the ovéfequent, cascades, by not removing some line overloads.
load.

In order to implement the partial generation dispatch and
load shed algorithm we have followed reference [2] and The model is rich and complex in its possible behavior. In
formulated the operator's response as an optimization-préffder to deal with the large variety of events we have time-
lem in which we solve the DC power flow equations whil@rdered all events in an event list. There are a number of

I1l. SIMULATION ALGORITHM

minimizing the following cost function: different event types that can be generated during the gwolu
of the system. The simulation begins by determining the time
= Z |Pi = Piol + W Z(PJ’ — Pjo) - (13)  of the first type 3 event for each transmission line. The first

g jeL type 3 event is initiating the event list. We have the potigibi

In this equationP;, and P;, are generator and load valuesto introduce random load perturbations which happen on a
respectively, before turning on generator dispatch and loéime scale that is much smaller than the characteristic time
shed, while P; and P; are generator and load values aftegcale for random failure events. After each new random load
the overloads are removed. The cost function was chosenctimfiguration we solve the power flow equations in order to
minimize a trade-off between the change in generation (firgétermine the new state of the system. If these fluctuations i
summation over generator nodgsand the load shed (secondroduce overloads, one of the utility response actionsriteet
summation over load nodeS) necessary to eliminate thein Section[l is chosen according to igspriori probability.
overloads. We assume that the cost of adjusting generators iwhen a failure event (type 3) is encountered, the line is
the same and that loads share the same priority to be send@inaged and a random restoration timeis drawn from

In order to force generator dispatch first, and simultanlyoushe probability distribution defined in the restoration rabd
minimize the load shed in a contingency, we set a high prigerestoration event (type 0) for this line is introduced ithe

for load shed by choosing” = 100 as in [2]. While restoring event list at timet + ¢, and a new random failure time for this
the loads after each contingency seems natural, generafgifed line is generated. The next type 3 event is determined
restoration reflects the idea that the generation distdbus by finding the first type 3 event over all transmission lines
optimal from an economic view point and, for this reasorand is introduced into the event list. To keep this list small
we would like to also restore the state of the generatoige always keep a single type 3 event in the event list, but the
Even though the absolute value of the generation shift appegype 3 event times for all lines in the network are stored in a
in the optimization problem, this optimization problem cageparate vector.

be solved using linear programing techniques, following th When an overloaded line is present in the system, there is

method introduced in [10]. a probabilityp, that the overloaded state of the line will be
The minimization of the cost function is performed subjeghissed by the utility operator, due to an erroneous estimati
to the following constraints: of the state of the transmission line. As we know, this defines
1) forcing an upper limit on the generator power< P; < a type 2 event. In this case, there is a time detay,until
pmer i e gG; the line reaches the critical temperature, that correspood
2) forcing the loads not to generate powét, < P; < its rating power, and fails. If the failure time+ ¢. happens
0,7 € L; beforeany other event in the event list, we include this event

3) forcing the power flow through the line within @ into the event list andemoveany other events of type 1 or
fraction of the line ratings-aP"** < P, < o™, 2 that follow. Because this event damages the line, a random



restoration time to fix the line must pass before it can be

: . : RESULTS: LY
put back in service. Therefore, we also compute a restaoratio  Initial Condition for £ ‘V.r—v\ﬁ Atlantic
timet,., sampled according to EG{11), and a restoration event %ffiie; e \H%ﬁ : Ocean
corresponding to this line will be also included in the event correction) VACIR e

list at timet + t. + t,.. As we have just remarked, restoration
events define type 0 events. The line can be restoredadtdy
time ¢t + t. + t,., wheret is the present simulation time. v
If t+t. comesafter any other event, then we do not include F
this type 2 event in the event list, because a grid alteratidin
happen before it reaches its critical temperature. Indegdier
events may either modify its time of reaching the critical

temperature, or may remove completely the overload and the = = = e

line will cool down toward an equilibrium temperature below - = . Florida

the critical temperature. For this reason, we also remoye an o

other events of type 1 or 2 that follow an earlier type 2 event. Fig. 2. Undamaged initial electrical power model.

We neverremove type 3 and type 0 events from the event list.
Alternatively, with probabilityp;, the operator shuts down
the line in order to prevent its tripping due to overheatifg. the hourly load demand variations during the evolution of
we have seen this defines a type 1 event. In this case, it is g event. Our goal is to compare the cost, in terms of
necessary to repair the line, which can be set back in serviead loss, of various mitigating responses in addressieg th
according to the reconnection strategy described belowyat &merging system problems. The operator’s response ranges
time after the present time from choosing not to respond to eliminate overloads, to
No line can be reconnected until a restoration event happémglement suboptimal generation dispatch, to respond with
because, as described in Secfidn Il, we assume that withowéimized system correction, i.e. generation dispatchlaad
line reconnection the state of the system has not improvedsiredding, to eliminate overloads. The critical algorithais
order to prevent overloads in the reconnected lines orijiplgss the cascade simulation include estimating restoratioe tirf
somewhere else in the system. damaged components, estimating the time to disconnect for
After each restoration (type 0) event, we choose to recannéerloaded lines, recovering (when possible) load presfjou
all type 1 lines according to one of the reconnection stiageglost during contingency and islanding events, and attergpti
presented in detail in Sectiddl Il. Sometimes reconnectioffsreconnect previously disconnected lines.
result in overloads and, as a result, the utility may chooseFigure @ shows the undamaged initial electrical power
to remove the reconnected lines in order to remove the®@del. This transmission system consists of 100 nodes, 133
overloads and to restore the system to its old status befdnes, 24 generators, and 5 interties (boundary conditions
reconnections were attempted. In this case, each reswratiepresenting external networks not included within thegra
event is written back into the event list as type 1 event amd canission system). Small arrows indicate the direction of flow
be reconnected again at a later time when another reconnec@f the real power. The model features a high-voltage (23p-kV
events is encountered. For this reason, the event list wilg (light blue) that carries power to the lower voltage §13
contain many type 1 events before the present simulatioa titdV, pink) and (69-kV, dark blue) lines that deliver power to
t, for which reconnection attempts have failed. the distribution network. The system is quite robust in that
Finally, at the beginning of a new event at event time generates more power than it uses, so it is a net exporter of
the line temperatures are determined based on the knop@wer, and it does not depend upon external sources of power.
temperatures at the previous event (time step), dt, and About 2 GW of power are supplied to local customers.

the d¢ time elapsed since the previous event. Thus, accordingFigurel3 shows the starting contingency where four 230-kV
to Eq. [8), we update the temperature of lin® lines are damaged and lost from service. This contingensy wa

chosen to sever the high capacity transmission paths betwee
Ty(t) = e "™ (Ti(t — dt) — Tu(Pi(t — dt))) + Ta(Pi(t —dt)) . the largest generators in the northern section of the model
(14) from the southeast section of the model that has loads and
Note that the power flow? (¢ — d¢) remains unchanged sinceno generation. This contingency creates four overloaatess|i
the previous event time— dt. two at about 120% loading and two at 108%. The two higher
loaded lines are disconnected 3.6 hrs after the initialifad
(see Figur&l4). This shifts the power to create larger oaerlo
The first application of our time-event simulator is to loolof 70% and 50% that are disconnected at 3.8 and 4.2 hrs (see
at overloaded-line cascading failures. This section tilates Figure[®). This creates a situation where only one (oveddad
a cascade simulation for a typical choice of the parametgrath remains to supply power to the southeast part of the
of the model. In order to simulate this cascade event wmeodel. This last line is disconnected (to protect it) at t 234.
only follow the evolution of real power flows and neglechrs. This disconnection creates a black electrical islamrd, (

IV. SAMPLE RESULTS FORCASCADING FAILURES



Result:

4 overloaded

lines . .
- | Four 230-kV lines

Damaged!!

Fig. 3. Starting contingency for electrical power model.

4 / | [lmes 3 525 b
shifting flows
cause
70% ovrld

1# disconnect
of 20% ovrld (xfinr)
at t=3.60 hrs

24 disconnect \ Ilr i i
of 20% ovrld L
at 3.625 hrs ik

L}

Fig. 4. Two higher loaded lines are disconnected.

L, 5 & 6 disconnects
of 50% ovrlds

| in 138-kV lines

at 4.20 hrs

; / i{ : i 31 disconnect
of 701% ovrld

i in 69-kV line at 3.88 hrs

b |

Fig. 5. Three overloaded lines are disconnected.

Contingency Failures:

7 disconnect
of 180% ovrld
in 138-kV line at 4,23 hrs

BLACKOUT
& at 4.25 hrs
974 MW of lost load
y : No remaining
(4 lines to be reconnected) :
. overloads

Fig. 6. Estimated outage area.

no power can reach it). The estimated outage area is shown in
Figure[®. The electrical company loses 974 MW of customer
load at this time.

After the blackout begins, there are no overloads in the
system. Also several of the previously disconnected lirres a
returned to service, but none of those lines connect thekblac
island to the working island. It is not until hour 25.5, whée t
first one of the originally damaged 230-kV lines is replaced
and restored to service, that the black island gets rectehec
to the working network and all loads are recovered (with no
overloads in the network). This ends the effect of the cascad
event.

The result of this cascade example is summarized in Thble I.
In the discussion above, if the utility opts to do nothing
after the initial four-line contingency, the relatively ath
overloads that result are eventually automatically diseated
to prevent them from being damaged, and the event cascades
to cause a blackout affecting almost a GW of customer load.
If, instead, the utility immediately sheds load after thiiah
event, all overloads are eliminated by shedding 108 MW.
If one optimally sheds load and simultaneously adjusts the
generation within the utility, then only 73 MW need be shed.
The bottom line is that under the assumption of constant
demand, choosing not to respond to eliminate overloads in
the system can result in cascading failures where muchrlarge
loss of customer load can result. If we were also simulatieg t
hourly variation in demand, the quantitative and possibly t
qualitative conclusions could vary depending upon whether
the initial contingency occurred during a period of demand
growth or demand shrinkage. Such load-variation effects ca
be modeled using the new time-event simulator.

V. OPTIMAL RESPONSE

In this Section we discuss some of the features of the
stochastic model when the utility response to line overdaad
represented by the generation dispatch and load shed aptimi
tion algorithm. We choose to vary the line overload paramete
« in order to describe a smooth transition from a risk averse
a < 1 to a risk taken response far > 1.



TABLE | TABLE I

RESULTSSUMMARY OF FOUR 230K V-L INE CONTINGENCY COMPARISON OF UTILITY RESPONSES WITH VARIOUS OPTIMIZATION RSK
FACTORS
Approach Load Cost || Outage Duration Effect
(MW) (hrs) @ 0.90 0.95 || 1.00 || 1.10 || 1.20 || 1.30 || 1.40
do nothing 974 21.3 cascade ¢, || 10.70| 10.93| 0.35 || 1.78 || 2.02 || 3.04 || 7.27
blackout Cy || 4026 || 4193 || 178 || 937 || 1032 || 1498 || 2966
shed load 108 25.0 load shed
for overloads waiting for repairs
shed load 3 25.0 load shed events that shed power in the system “cascades”, not alteven
and dispatch waiting for repairs | 56 cascading events in which a triggering failure produces

a sequence of secondary failures that lead to blackout of
a large area of the grid as presented in Sectibnl V. An
We want to test here two different optimization strategiegxact characterization of the events, including their isgal

against the response = 1. The choicea = 1 defines the properties will be presented elsewhere.
normal operating response represented by generationtclispa The results of our numerical experiments are summarized
and load shedding to restore line flows at their critical galun Tablefll. For the set of model parameters used in our exper-
(line ratings). This should be comparedio< 1 case when the iments, the best response strategy is to implement the gener
operator prevents the lines from even reaching their thierni@n dispatch and load shed optimization with parameter
ratings, ora. > 1 when the operator decides to respond wheh but we should remark that a globalparameter is probably
the line flows reach a threshold higher than the line rating3ot the most efficient implementation of this optimizatidea.
In the first case,x < 1, we trade off an increased loadWe expect that choosing a line dependentalue, that takes
shed versus a smaller risk of generating large cascaddse Inipto account the importance of each line flow to the overall
second casey > 1, we trade off a smaller load shed versugower transport in the system, could provide a more suaglessf
an increased risk of generating large cascades. The guesfigtimization strategy. For example, we can choase 1 for
we ask is the following: Are there any model parameters fgnes that carry the backbone of the power flow, and which will
which one of this choices performs better than the optirianat Probably generate large flow redistributions for eithex 1
algorithm fora = 1? While we do not have as yet a complet@’ « > 1, and a smaller or larges value for the rest of
answer to this question, we present here the results of de lines. A possible objection against this strategy cathbe
numerical experiments for the following model parameterfact that the optimization approach proposed leads to demag
As = 0.0001,c = 3h, A\, = 0.2h~! andps = 1. We have to equipment, but it is useful to remember that August’,
run our experiments for the power grid model of 100 node3003 blackout cost billions of dollars in in economic losses
24 generators, and 5 interties, that we have already intetiu but caused negligible equipment damage [27]. It is possible
in Section[I¥. In order to compare the model responses ften that equipment damage that can significantly decrease t
differento values we have estimated the cost of cascades pégial cost of blackout events is a feasible preventiortegiya
unit time, C, and the cost of cascades per evéht, The cost Moreover, one could conceivably extended this approach to

of a cascade, in MW hour, is defined as follows: other parameters or to other optimization strategies that c
. be used to assess vulnerabilities and to allocate protectio
C = / AP(t)dT, (15) devices and preventive maintenance responses, as deisicribe
ts [24]. The model can also be generalized to replace the unique

wheret, is the time when cascade event starts, i. e. the powRgwer grid operator with a network of distributed, autonaio
served is less than the power demands the time when the @gents who share local information in order to coordinagérth
cascade events ends with full service of the power dematRfal responses to finding good global optimization sohutio

and AP(t) is the power shed at time during the cascade, @S described in [15]. A decentralized approach may also
t, <t < t.. In fact, the two cost functions we use can b&¢enefit from the information provided by the structure of the

defined as underlying network of flows, as proposed in [20].
J"t?f AP(t)dT VI. CONCLUSION
G = . tp—t; (16) As more vulnerable networks emerge, due to the introduc-
ty tion of deregulated energy markets, the demand for a more
[T AP(t)dT ) : .
Cy = - 7 (17) reliable representation of the networks in order to colyect
N assess the operational security level of the transmisg&tes

where t; is the starting time of the simulatiort; is the will increase. At the same time, as the complexity of opemati
ending time of the simulation, whilév is the number of the grid grows, modeling the operator's response to these
cascade events during the simulation time. Of cou€sejs challenging demands becomes increasingly critical andldho
also the average cost of a cascade. Even though we callmitch in sophistication the modeling of the grid itself. For
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